Name: \qquad

Mark:
25

MATH 251 (Winter, 2022)
 Test 3

1. (5 marks) Find all complex number solutions of the equation

$$
z^{3}+8 i=0 .
$$

Express your answer(s) in the rectangular form $a+b i$ using exact values.
2. (6 marks) Let $A=\left[\begin{array}{rrr}3 & -2 & -8 \\ 2 & 6 & 1 \\ -1 & 0 & 2\end{array}\right]$.
(a) Calculate $\operatorname{tr}(A)$, the trace of matrix A.
(b) Use the cofactor method to find A^{-1}.
(c) Find the volume of the parallelepiped determined by the column vectors of A.
3. (6 marks) Diagonalize the matrix

$$
A=\left[\begin{array}{rr}
1 & -4 \\
-1 & -2
\end{array}\right]
$$

by factoring it into a product $A=P D P^{-1}$, where P is an invertible matrix and D is a diagonal matrix.
4. (8 marks) Let

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
0 \\
0 \\
-1 \\
1
\end{array}\right], \quad \text { and } \quad \mathbf{v}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

and define $W=\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$.
(a) Show that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is an orthogonal basis for W.
(b) Find an orthonormal basis for W.
(c) Find $\operatorname{proj}_{W}(\mathbf{v})$ and $\operatorname{perp}_{W}(\mathbf{v})$.
(d) Find a basis for W^{\perp}.
(e) Is your basis from part (d) orthogonal? Briefly explain.

