Name: \qquad

Mark:

$$
25
$$

MATH 251 (Winter, 2022)
 Test 2

1. (4 marks) Factor $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 4 & 0 & 1 \\ 0 & 3 & 0\end{array}\right]$ into a product of elementary matrices.
2. (3 marks) Solve the system of equations

$$
\left\{\begin{aligned}
11 x_{1}+6 x_{2}-3 x_{3}-7 x_{4} & =3 \\
-26 x_{1}-13 x_{2}+8 x_{3}+16 x_{4} & =-1 \\
-61 x_{1}-31 x_{2}+18 x_{3}+38 x_{4} & =0 \\
-x_{1}-x_{2}+x_{4} & =4
\end{aligned}\right.
$$

using the fact that

$$
\left[\begin{array}{rrrr}
11 & 6 & -3 & -7 \\
-26 & -13 & 8 & 16 \\
-61 & -31 & 18 & 38 \\
-1 & -1 & 0 & 1
\end{array}\right]\left[\begin{array}{rrrr}
2 & 3 & -1 & 4 \\
4 & -3 & 2 & 0 \\
1 & 5 & -2 & 3 \\
6 & 0 & 1 & 5
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

3. (8 marks) A matrix B is said to be a square root of a matrix A if $B^{2}=A$. Consider a 2×2 matrix B having the form

$$
B=\left[\begin{array}{rr}
3 & k^{2} \\
-k & -3
\end{array}\right],
$$

where k is a real number. Find the value(s) of k (if any) if
(a) B is a square root of the identity matrix I_{2}.
(b) $B \mathbf{x}=6 \mathbf{x}$, where $\mathbf{x}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$.
(c) B is a symmetric matrix.
(d) B is an invertible matrix.
4. (6 marks) Suppose

$$
\begin{gathered}
A=\left[\begin{array}{lllll}
1 & 1 & 2 & 2 & 2 \\
2 & 1 & 3 & 2 & 5 \\
3 & 2 & 5 & 4 & 7 \\
4 & 2 & 6 & 1 & 7
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{rrrrr}
1 & 0 & 1 & 0 & 3 \\
0 & 1 & 1 & 0 & -3 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
A^{T}=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 1 & 2 & 2 \\
2 & 3 & 5 & 6 \\
2 & 2 & 4 & 1 \\
2 & 5 & 7 & 7
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

(a) Find a basis for the column space of A consisting of columns of A.
(b) Find a basis for the row space of A consisting of rows of A.
(c) Find a basis for the null space of A.
(d) Find $\operatorname{rank}(A)$ and nullity (A).
5. (4 marks) Suppose T is a linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} satisfying

$$
T(\mathbf{i})=\left[\begin{array}{r}
-5 \\
2
\end{array}\right] \quad \text { and } \quad T(\mathbf{j})=\left[\begin{array}{r}
-7 \\
3
\end{array}\right] .
$$

(a) Evaluate $T(2 \mathbf{i}-3 \mathbf{j})$.
(b) Find the standard matrix for T^{-1}.
(c) Evaluate $T^{-1}(\mathbf{i})$ and $T^{-1}(\mathbf{j})$.

