Name: \qquad

Mark:
25

MATH 251 (Winter, 2022)

Test 1

1. (6 marks) Consider the parallelogram formed by vectors $\mathbf{u}=\left[\begin{array}{r}3 \\ -2 \\ -1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{r}2 \\ -5 \\ 0\end{array}\right]$.
(a) Find the area of the parallelogram. Give an exact, simplified answer.
(b) Find the angle $0^{\circ} \leq \theta \leq 180^{\circ}$ between \mathbf{u} and \mathbf{v}. Round your answer to two decimal places.
(c) Find vectors representing each of the diagonals of the parallelogram.
2. (6 marks) Consider the points $A=(1,2,3), B=(3,5,-3)$ and $C=(11,10,-6)$.
(a) Find a unit vector that points in the direction of $\overrightarrow{A B}$.
(b) Find an equation, in vector form, of the line passing through points A and B.
(c) Find the distance between point C and the line in part (b).
3. (4 marks) Consider the line defined parametrically by

$$
\left\{\begin{array}{l}
x=7-2 t \\
y=1+5 t \\
z=-6+3 t
\end{array}\right.
$$

(a) Find the coordinates of the point where the line intersects the $x y$-plane.
(b) Find an equation, in general form, of the plane passing through the point $P=(1,2,-1)$ that is perpendicular to the given line.
4. (5 marks) Use the Gauss-Jordan Elimination method to find all the solutions of the system of linear equations. Write your answer in column vector form. Clearly show your steps, including your row operations.
5. (2 marks) Set up, but do not solve, a homogenous system of linear equations that could be used to balance the following unbalanced chemical equation involving the elements $\mathrm{Mn}, \mathrm{O}, \mathrm{H}$ and Cl .

$$
\mathrm{MnO}_{2}+\mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}
$$

6. (2 marks) Consider the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
3 \\
4 \\
-2 \\
3
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
2 \\
-1 \\
3 \\
5 \\
2
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
4 \\
5 \\
2 \\
1
\end{array}\right], \quad \mathbf{v}_{4}=\left[\begin{array}{r}
7 \\
-9 \\
-2 \\
-4 \\
9
\end{array}\right]
$$

and suppose

$$
\left[\begin{array}{rrrr}
1 & 2 & 0 & 7 \\
3 & -1 & 4 & -9 \\
4 & 3 & 5 & -2 \\
-2 & 5 & 2 & -4 \\
3 & 2 & 1 & 9
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{rrrr}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & -4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

If possible, express \mathbf{v}_{4} as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}$ and \mathbf{v}_{3}. If not possible, explain why.

