# Systems of Two Linear Equations in Two Variables 

A system of two linear equations in two variables can have one of three possible sets of solutions. It can have a unique solution, no solution, or infinitely many solutions. The following examples illustrate these possibilities.

1. Unique Solution: Consider the system

$$
\left\{\begin{array}{l}
x+y=1 \\
x-y=3 .
\end{array}\right.
$$

By adding these equations, we get $2 x=4$ and so $x=2$. Substituting $x=2$ into either of the equations yields $y=-1$. So, this system has a unique solution $(x, y)=(2,-1)$. Writing the solution in vector form gives

$$
\mathbf{x}=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

Graphically, these equations represent intersecting lines in the plane and the point of intersection represents the unique solution.

2. No Solution: Consider the system

$$
\left\{\begin{array}{l}
2 x+y=3 \\
4 x+2 y=7
\end{array}\right.
$$

Dividing the second equation by 2 gives $2 x+y=7 / 2$. Since $2 x+y$ cannot equal both 3 from the first equation and $7 / 2$ from the second equation, then this sytem of equations has no solution. Its solution set is the empty set, $\varnothing$.

Rewriting these equations in slope-intercept from gives

$$
\left\{\begin{array}{l}
y=-2 x+3 \\
y=-2 x+7 / 2
\end{array}\right.
$$

These equations represent parallel lines having the same slope of -2 but different $y$-intercepts. Since there are no points of intersection, then there is no solution.

2. Infinitely Many Solutions: Consider the system

$$
\left\{\begin{array}{l}
2 x+y=3 \\
4 x+2 y=6
\end{array}\right.
$$

Dividing the second equation by 2 gives $2 x+y=3$, which is the same as the first equation. These two equations are therefore equivalent and represent the same line, which in slope-intercept form can be written $y=-2 x+3$. Therefore, there are infinitely many solutions consisting of all points $(x, y)$ lying on this common, overlapping line.

The solutions can be written in vector form by introducing a parameter $t$ and letting $x=t$ and $y=-2 t+3$. Solution vectors are therefore

$$
\mathbf{x}=\left[\begin{array}{c}
t \\
-2 t+3
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right]+t\left[\begin{array}{c}
1 \\
-2
\end{array}\right], \text { for any } t \in \mathbb{R}
$$



