Name: \qquad

Mark:
25

MATH 251 (Winter, 2024)
 Test 3

1. (4 marks) Evaluate $4 \angle 120^{\circ}-2 \angle 60^{\circ}$. Express your answer in phasor form, $r \angle \theta$, using exact values for both r and θ (i.e. no decimals).
2. (6 marks) Let $A=\left[\begin{array}{rr}9 & -4 \\ 5 & 1\end{array}\right]$.
(a) Find the area of the parallelogram formed by the column vectors of A.
(b) Is $\mathbf{x}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ an eigenvector of A ? Briefly explain.
(c) Find the eigenvalues of A.
3. (5 marks) Let $A=\left[\begin{array}{lll}1 & 2 & 6 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]$.
(a) Find the eigenvalues and corresponding eigenspaces of A.
(b) If possible, find a diagonal matrix D and an invertible matrix P so that $P^{-1} A P=D$. If it's not possible, then explain why.
4. (4 marks) Use Cramer's Rule to solve for x_{2} in the system of linear equations $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{llll}
0 & 1 & 5 & 0 \\
3 & 1 & 0 & 3 \\
0 & 0 & 2 & 0 \\
0 & 3 & 0 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{l}
8 \\
9 \\
2 \\
7
\end{array}\right]
$$

5. (6 marks) Let

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
-1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
1 / 2 \\
1 / 2 \\
-1 / 2 \\
1 / 2
\end{array}\right], \quad \text { and } \quad \mathbf{v}=\left[\begin{array}{l}
2 \\
3 \\
4 \\
5
\end{array}\right],
$$

and note that \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent. Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ be a basis for the subspace $W=\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$ of \mathbb{R}^{4}.
(a) Is \mathcal{B} an orthonormal set? Briefly explain.
(b) What vectors, if any, belong to both W and W^{\perp} ?
(c) Find $\operatorname{proj}_{W}(\mathbf{v})$ and $\operatorname{perp}_{W}(\mathbf{v})$.

