Name: \qquad

Mark:
25

MATH 251 (Winter, 2024)

Test 2

1. (3 marks) Evaluate $A^{-1}+2 A^{T}-4 I$, where $A=\left[\begin{array}{ll}-8 & 5 \\ -3 & 2\end{array}\right]$.
2. (3 marks) Let S be the set of vectors $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ in \mathbb{R}^{3} such that $|x|=|y|=|z|$.
(a) Give examples of two linearly independent vectors, \mathbf{u} and \mathbf{v}, belonging to S.
(b) Use your vectors from part (a) to prove that S is not a subspace of \mathbb{R}^{3}.
3. (6 marks) Let $A=\left[\begin{array}{rr}2 & -3 \\ -6 & 5\end{array}\right]$.
(a) Find an $L U$ factorization of A.
(b) Use the $L U$ method to solve the system

$$
\left\{\begin{aligned}
2 x_{1}-3 x_{2} & =-7 \\
-6 x_{1}+5 x_{2} & =1 .
\end{aligned}\right.
$$

4. (4 marks) Let $A=\left[\begin{array}{lll}0 & a & 0 \\ 1 & 0 & 0 \\ b & 0 & 1\end{array}\right]$, where a and b are scalars and $a \neq 0$.
(a) Use the Gauss-Jordan method to find A^{-1}.
(b) Find a and b if A is symmetric.
5. (5 marks) Suppose

$$
A=\left[\begin{array}{lllll}
4 & 8 & 1 & 9 & 5 \\
3 & 6 & 2 & 8 & 4 \\
2 & 4 & 3 & 7 & 3 \\
1 & 2 & 4 & 6 & 3
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{lllll}
1 & 2 & 0 & 2 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Find a basis \mathcal{B} for the column space of A consisting of columns of A.
(b) For each column vector \mathbf{v} of A that is not in your basis \mathcal{B} from part (a), find its coordinate vector with respect to the basis \mathcal{B}, i.e. find $[\mathbf{v}]_{\mathcal{B}}$.
(c) Find $\operatorname{rank}(A), \operatorname{rank}\left(A^{T}\right), \operatorname{nullity}(A)$ and $\operatorname{nullity}\left(A^{T}\right)$.
6. (4 marks) Suppose $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation defined by

$$
S\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{l}
4 y \\
2 x
\end{array}\right] .
$$

(a) What is the standard matrix for S ?
(b) Consider the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that rotates a vector 60° counter-clockwise and then performs the transformation S. Find the standard matrix for T. Give an exact, simplified answer (no decimals).

