Section Exploration: Geometric Applications of Determinants Answers to Recommended Problems

Below are answers to the recommended problems from the "Exploration: Geometric Applications of Determinants" section.

1. (a) $3 \mathbf{i}+3 \mathbf{j}-3 \mathbf{k}$
(b) $-3 \mathbf{i}-3 \mathbf{j}+3 \mathbf{k}$
(c) 0
(d) $\mathbf{i}-2 \mathbf{j}+\mathbf{k}$
2. We evaluate $\mathbf{v \times w}$ using whichever technique we prefer and then compute the dot product $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$, expanding our answer. Separately, we compute the determinant of the 3×3 matrix on the right-hand side by (for example) expanding across the first row, and again we expand our answer. Comparing the two results, they should be equal.
3. Treating \mathbf{u} and \mathbf{v} as vectors in \mathbb{R}^{3} with their third components equal to zero as per the hint, we find $\mathbf{u} \times \mathbf{v}$ by expanding about the third column and show it equals $\mathbf{k} \operatorname{det}\left[\begin{array}{ll}u_{1} & u_{2} \\ v_{1} & v_{2}\end{array}\right]$. Using the fact the area of the parallelogram equals the length of $\mathbf{u} \times \mathbf{v}$, we find that the area therefore equals $\left|\operatorname{det}\left[\begin{array}{ll}u_{1} & u_{2} \\ v_{1} & v_{2}\end{array}\right]\right|$ since $\|\mathbf{k}\|=1$, which in turn is equivalent to $\left\lvert\, \operatorname{det}\left[\begin{array}{ll}u_{1} & v_{1} \\ u_{2} & v_{2}\end{array}\right]\right.$.
4. (a) 11
(b) 5
