Section Exploration: The Cross Product Answers to Recommended Problems

Below are answers to the recommended problems from the "Exploration: The Cross Product" section. Vectors have been written in row form for convenience of typing, but they should be in column form.

1. (a) $[3,3,-3]$
(b) $[-3,-3,3]$
(c) 0
(d) $[1,-2,1]$
2. Here we calculate $\mathbf{e}_{1} \times \mathbf{e}_{2}$ and show it equals \mathbf{e}_{3} and do the same for the other two cross products. Recall $\mathbf{e}_{1}=[1,0,0], \mathbf{e}_{2}=[0,1,0]$, and $\mathbf{e}_{3}=[0,0,1]$.
3. (a) $[3,3,-3] \cdot[x, y, z]=[3,3,-3] \cdot[1,0,-2]$ is one possible answer; converting to general form and simplifying gives $x+y-z=3$.
(b) $[-5,5,5] \cdot[x, y, z]=[-5,5,5] \cdot[0,-1,1]$ is one possible answer; converting to general form and simplifying gives $x-y-z=0$.
4. (a) If we calculate $\mathbf{v} \times \mathbf{u}$, where $\mathbf{v}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right]$ and $\mathbf{u}=\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right]$, using whichever technique we prefer, and factor out a negative sign, we should be left with $\mathbf{u \times v}$, proving $\mathbf{v} \times \mathbf{u}=-(\mathbf{u} \times \mathbf{v})$.
5. (a) If we let $\mathbf{u}=\left[\mathrm{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right], \mathbf{v}=\left[\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right]$, and $\mathbf{w}=\left[\mathrm{w}_{1}, w_{2}, w_{3}\right]$ and work out the cross products $\mathbf{v} \times \mathbf{w}$ and $\mathbf{u} \times \mathbf{v}$, and then later work out and expand the dot products $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$ and ($\mathbf{u} \times \mathbf{v}$) $\cdot \mathbf{w}$, we should find that they are equal, each consisting of the same six terms.
6. (c) $\frac{\sqrt{62}}{2}$
