Section Exploration: The Cross Product Answers to Recommended Problems

Below are answers to the recommended problems from the "Exploration: The Cross Product" section. Vectors have been written in row form for convenience of typing, but they should be in column form.

- 1. (a) [3,3,-3]
 - (b) [-3,-3,3]
 - (c) **0**
 - (d) [1,-2,1]
- 2. Here we calculate $\mathbf{e}_1 \times \mathbf{e}_2$ and show it equals \mathbf{e}_3 and do the same for the other two cross products. Recall $\mathbf{e}_1 = [1,0,0]$, $\mathbf{e}_2 = [0,1,0]$, and $\mathbf{e}_3 = [0,0,1]$.
- 4. (a) [3,3,-3]·[x,y,z]=[3,3,-3]·[1,0,-2] is one possible answer; converting to general form and simplifying gives x+y-z=3.

(b) $[-5,5,5] \cdot [x,y,z] = [-5,5,5] \cdot [0,-1,1]$ is one possible answer; converting to general form and simplifying gives x-y-z=0.

- 5. (a) If we calculate $\mathbf{v} \times \mathbf{u}$, where $\mathbf{v} = [v_1, v_2, v_3]$ and $\mathbf{u} = [u_1, u_2, u_3]$, using whichever technique we prefer, and factor out a negative sign, we should be left with $\mathbf{u} \times \mathbf{v}$, proving $\mathbf{v} \times \mathbf{u} = -(\mathbf{u} \times \mathbf{v})$.
- 6. (a) If we let u=[u₁,u₂,u₃], v=[v₁,v₂,v₃], and w=[w₁,w₂,w₃] and work out the cross products v×w and u×v, and then later work out and expand the dot products u·(v×w) and (u×v)·w, we should find that they are equal, each consisting of the same six terms.

8. (c)
$$\frac{\sqrt{62}}{2}$$