Answers to Selected
Odd-Numbered Exercises

Appendix A [ < ] Assume that both m and n are even. Then clearly
Exercises A both mn and m + n are even.
1.1,2.3.4 3. (1,2}, {3.4) 51. If V2 is rational, then it can be written in the form
V2 = a/b, where a and b are integers with no common
5. None 7.-2,-1,0,1,2,3 factors. Then 2 = a?/b?%, so a®> = 2b* and, hence, a? is
9.1,2 11. None even. Hence, a is even (by Exercise 49 withm = n = a)

and so a = 2k for some integer k. But then 4k> = 25,
so b> = 2k? and, hence b’ is even. Hence, b is even and
a and b have a common factor of 2, a contradiction.
Conclude that V2 must be irrational.

13.-3,-2,-1,0,1,2,3,4,6

15.{1,3,5,7,...} 17.{...,—=5,—-1,3,7,...}
19.{neZ:|n| =3} 21. {3n —2:neN}
23.{5n:nelZ} 25.A=B=C,D=E
27.ANB={2,4},AUB={1,2,3,4,5,6,8}
29.ANB=UJ,AUB=1{1,2,3,5,7,10, 15, 17, 26, 31}

Appendix B
Exercises B

25 8 1.Forn = 1,wehave | = 2+ 12 — 1. Assume that
31-;12’6 33-;1/2k“ 1+54+9+---+ (4k — 3) = 2k> — k. Then
. » 1+5+ - +@Kk+1)—3)=1+5+---
35. Z(3k +2) 37. Zrk’l +@4k—=3)+@k+ 1) =2 —k+ 4k + 1
= = =20 + 2k + 1) — (k+ 1) = 2(k + 1)> — (k + 1).
2 2 2
39, \i—j|=2(|i|+|i—1|+\i—2\) 3.Forn=1,wehave I’=1=1(1+1)2-1+ 1)/6.
=050 =0 Assume that 12 + 22+ 32+ - - - + 2 =k(k + 1)
=0+1+2)+0+0+1H+Q2+1+0)=28 (2k +1)/6. Then 12+ 22 + - - + &2 + (k + 1)
22 .. .2 . ) . =k(k+1)Q2k+ 1)/6 + (k+ 1> = (k(k + 1)
P2 e (R U Qk + 1) + 6(k + 1)?)/6 = (k + 1)(k(2k + 1)
=0+1+2)+0+0+D+Q+1+0)=8 +6(k + 1)/6 = (k + DK + Tk + 6)/6 =
, . (k + Dk + 2)Q2%k + 1) + 1)/6.
41. If n is even, then n = 2k for some integer k. Then

43.

45.

47.

49.

3n — 5 =3(2k) — 5 =23k — 3) + 1, which is odd.

If n is even, then n = 2k for some integer k and so

n®* —n = (2k)* — 2k = 2(4k* — k), which is even.

If n is odd, then n = 2k + 1 for some integer k and so
nw—n=QRk+ 173 — Q2k+1)=8k+ 12k + 4k =
2(4k* + 6k> + 2k), which is even.

(By contrapositive) If n is not odd, then » is even.
Thus, n = 2k for some integer k and so 3n + 1 =
3(2k)+ 1 = 2(3k) + 1, which is odd. Hence 3n + 1
is not even.

(By contradiction) Suppose that m + n is odd but it is
not the case that one of m or n is even and the other is
odd. Then either m and n are both even or they are both
odd. In either case, m + n is even, a contradiction.
Conclude that one of m or n is even and the other is odd.

[ = ] (By contrapositive) Assume that it is not the case
that both m and n are even. If m and n are both odd, then
mn is odd; if only one of m or n is even, then m + n is
odd. In either case, it is not the case that mn and m + n
are both even.
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11.

13.

.Forn =0, wehave | =2°"" — 1. Assume that 1 + 2 +

4+ 8+ +20=21— . Thenl +2+4+- -+
2k+2k+l:(2k+l_1)+2k+1:2.2k+1_1:2k+2_1'

.Forn=1,wehavel - 1!=1=2—-1=(1+1)! — 1.

Assumethat 1« 1! +2-2!'+ -+ k- k!=((k+ 1) — 1.
Then1-1!'+2-214+ -+ k-k!'+(k+ Dk+ 1) =
(k+IDN =D+ *k+Dk+D=k~+ D!
I1+*k+1D)—1=Ck+DIk+2)—1=
(k+2)! — 1.

. Forn =0, 0> + 0 = 0is even. Assume that k> + k

is even, so that k> + k = 2m for some integer m. Then
k+12+(k+D)=R+2%k+1+k+1=0E +k+
2k + 2 =2m+ 2k + 1) = 2(m + k + 1), which is even.
Forn=0,5"—1=1— 1= 0, which is divisible by 4.
Assume that 5% — 1 is divisible by 4, so that 5* — 1 =
4m for some integer m. Then 54! — 1 = 5++1 — 5k +
56— 1=(5— D5+ —1)=4-5+ dm = 45" + m),
which is divisible by 4.

For n = 5, we have 2° = 32 > 25 = 5% Assume

that 2¢ > k?. Then 2¢*! = 2 - 2 > 242, But, since

ANS33

23/12/24 4:25 PM



ANS34 Answers to Selected Odd-Numbered Exercises

k=15,k(k—2)=1s0k*= 2k + 1 and hence 2k*> = k* +
2k + 1 = (k + 1) It follows that 25*1 > (k + 1)

15.Forn = 1, we have 1 = 2 — 4. Assume that | + § +
b4 +L=2—LThenl+i+ - -+L+
=2~ ey =2~ (S5). Now
k+1)1?—k=kE+k+1=kE+k=kk+1).

Therefore, &7 5= 520 = Lo Tt follows that

1 1 — 1
L+a+ +(k+1)252 &+

17.Forn = 0, we have (ab)’ =1 =1 -1 = a°°. Assume
that (ab)* = a*b*. Then (ab)**' = (ab)"(ab) = a*b*ab =
akabkb o akJrlkarl.

19. For n = 1, we have x' — 1 = x — 1, which is certainly
divisible by x — 1. Assume that x* — 1 is divisible by
x — 1,sothat x¥* — 1 = (x — 1) f{x), for some polynomial
). Thenx*"! — 1 =x*"T —x +xX* —1=(x— 1) +
(x = D f(x) = (x — D)(x* + fix)), which is divisible by

x— 1.

21. For n = 0, we have a set with no elements: the empty
set J. The only subset of &J is J itself, so & has 1 = 2°
subsets. Assume that any set with k elements has 2*
subsets. Now let S be a set with k + 1 elements, say
S = {xl, Xy ooy X, xkﬂ}. If A C S, then eitherxk+1 eA

orx,_ A Ifx_ €A, thenA = {x_ } U A’, where

A’ is a subset of {xl, Xy oens xk}; by the induction

hypothesis, there are 2* such subsets. If X, EA, then

A is a subset of {xl, Xy oens xk}; by the induction

hypothesis, there are 2* such subsets. It follows that the

total number of subsets of S is 2F + 2k =2 « 2k = 2k+D),

as was required to be proved.

23. Hint: The basis step is for n = 3, in which case we have
a triangle and the sum of its interior angles is 180° =
(3 — 2)180°. Assuming that a convex k-gon has an
interior angle sum of (k — 2)180°, consider a convex
(k + 1)-gon P. Subdivide P into a triangle and a k-gon.

25. We conjecture thatL NEND S 1

1-2 2-3 n(n + 1)
n 1 1 1

:m foralanI.Forn=l, mzzzm

1 1 NP S
Assume that T2t73.3 " +k(k—i— 1))

= _k_
k+1
1

- 1

2723 G+ DE+2) 1-2
P BN G 1 _ k
2:3 Kk+1) kT Dk+2) k+

1

N 1 k21 KR40k
G+ Dk+2) *+Dk+2) *k+Dk+2)

k+1) k+1 k+1

T k+FDE+2 *k+2) Kkt DA+

27.Forn =1, we have 1 = 2° 1. Assume that, for all
integers n such that | = n = k, n can be factored as
n = 2im for some integer i = 0 and some odd integer m.
Consider k + 1. If k + 1is odd, then k + 1 = 2%k + 1)
is the required factorization. If k + 1 is even, then
k + 1 = 2a for some integer a. Since | =k, k + 1 = 2k
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29.

31.

33.

35.

37.

and so a = (k + 1)/2 =< k. By the induction hypothesis,
a = 2'm for some integer i = 0 and some odd integer m.
Then k + 1 = 2a = 2! m is the desired factorization.

Forn =8, wehave 8 =3 -1 + 5 - 1. Assume that, for
all integers n such that 8 = n =< k, n can be written as

n = 3a + 5b for some nonnegative integers a and b.
Considerk + 1. Since9 =3-3+5-0and 10=3-0
+ 5 -2, we may assume that k + 1 = 11. Hence
8=(k+1)-3=k—2=<kandsok—2=3a+5b
for some nonnegative integers a and b, by the induction
hypothesis. Thenk + 1 = (k —2) + 3 = (3a + 5b) + 3
= 3(a + 1) + 5b, as required.

Forn = O,wehavef0 =0=1—-1=f —1. Assume

k+1

thatgfi:fm— 1. Then ;}fiz (Zk:‘)f) + foi
:f(k+2) —1 +fk+1 = (fk+1 +fk+2) —1 :fk+3 -1

T Jusnye2

Forn =0,wehave f; =0°=0=0-1 = f f,. Assume
k k+1 k
that ;)ff=fkka.Then ;)ffz <;)f2> + 12,

=fifeor Th = hae ) = fifear
Forn=0,wehavef fi+f f=/f_-0+f" 1

= T Joro Assume thatf_f 45 f . =S,

forall0 =n=k Thenf f. +f f.,=

Joed G T 1) LG T ) = Unifies T 11D

T Gohe T hSiid) Tl Tk = Finr:

Forn =1,a2 X 2 board with a square removed is just a
single L-tile. Assume that a 2% X 2% with a square
removed can be tiled with L-tiles. Consider a 2F! X 2*+!
board with a square removed. Subdivide the board into
four 2% X 2% quadrants. One of the quadrants contains
the missing square, so it can be tiled with L-tiles,

by the induction hypothesis. Now place a single

L-tile at the center of the board so that it covers one
square in each of the remaining three quadrants.

By the induction hypothesis, the remaining squares

in each quadrant can be tiled with L-tiles, and we

are done.

k+1

I 2k 2k |
| I 1

1I

2k .:

T L

2k

1 v
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39. For n = 1, clearly a single disk can be transferred to a
different peg in 1 = 2! — 1 move. Assume that a tower
of k disks can be transferred to a different peg in
2F — 1 moves. Consider a tower of k + 1 disks on peg A,
say. In order to move it to peg B, we need to move the
largest disk to peg B. To do this, we first must transfer
the top k disks to peg C; this takes 2 — 1 moves, by
the induction hypothesis. Now move the largest disk
to peg B (1 move) and then transfer the tower of k
disks from peg C to peg B (2 — 1 moves). The total
number of moves is thus 2(2F — 1) + 1 = 2k — 1,
as required.

41. The basis step is not true.

Appendix C
Exercises C
1.8 — 4i 3.13+11i
5.7 — 4 7.1 — 1
9. & — Bi 11. —i
13. 10i 15.5 17.3

19. 2V2(cos(—/4) + isin(—m/4))
21. 2(cos (7/6) + isin (7/6))

23. zw = 2\2(cos(117/12) + isin(117/12)), z/w =
(2/\2) (cos(7m/12) + isin(77/12)), 1/z = (N2 /2)
(cos(3m/4) — isin(31/4))

25. zw = 8V2(cos(37/4) + isin(3m/4)), z/w =
2/N2(cos(m/4) + isin(w/4)), 1/z = (N2/8)
(cos(m/4) — isin(m/4))

27. 16 29.16 — 16V3i

31. =1, =i, =(\V2/2) = (V2/2)i
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33. +\3/2 +i/2, —i

Im
' s

» Re

—1i
35. —i 37.¢
39.(a)a+bi=a—bi=a+ bi
(¢) (a + bi)(c + di) = (ac — bd) + (ad + bc)i
= (ac — bd) — (ad + bc)i = (a — bi)(c — di)
= (a + bi) (c + di)
(e) Let z = a + bi. If zis real, then b = 0 and hence
7z =a = a = z. Conversely, if z = 7, then a + bi =

a — bi. Thus, 2bi = 0and so b = 0.
Hence z = a is real.

41. (a) From cos20 + isin260 = (cosf + isin0)*> =
(cos?0 — sin%0) + i(2cos6 sin6) we find that
c0s8260 = cos?0 — sin?6 and sin26 = 2cos6 sinf.

(c) From cos46 + isin46 = (cosf + isinf)*
= (cos*H — 65sin’6cos?0 + sin*6) + i(4 cos*6 sin O
— 4cos6sin®0), we find that cos 40 = cos*6 —
6sin’6cos?6 + sin*6 and sin 40 = 4 cos*6sin6 —
4cosBsin®6.

Appendix D
Exercises D

1. Polynomial 3. Polynomial
5. Polynomial for x # 0 7. Not a polynomial
9. Not a polynomial 11. Not a polynomial
13. Polynomial

15.f(x) + gx) = 3> + x — 1, f(x) — gx) = =32 +
x =3, f()gx) =3 —6x> +x—2

17.f(0) + gx) = x> + 2+ 2x, f(x) — glx) = —x* — x> — 2,
fg) =x'—1

19. f(x) + g(x) = x* + (1 + V2)x> — \2x + 2,
) = gx) = ¥ + (2 — D + \V2x, f(x) g(x) =
=2+ (1 + V2 =23 + (1 +V2)x2 —2x + 1

2. ’=(x+ Dx -1 +1
23.28° =X =(x—2)2* +3x+6) + 12
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2.4+ -3 —-2+2=F+x—-1DHKx*—-2)

27.2/5,2 29. No rational roots

31.—1/2 £+5/2 33. -1, =2

35.-1,2,4 %

37. There is one sign change, so p has at most one positive
zero. But p(0) = —1 and p(1) = 1, so there is a zero

in the interval (0, 1). Therefore p has exactly one
positive zero.

39. There are no sign changes, so p has no positive zeros.
Since p(—x) = —2x* + 3x> + 4 has one sign change,
p has at most one negative zero. We find that p(—2) = 0
and so, since p(0) # 0, p has exactly one real zero. Since
p has degree 3, p has three zeros altogether. Hence, p has
exactly two complex (nonreal) zeros.

41. There is one sign change so p has at most one positive
zero. Since p(0) = —1 and p(1) = 2, there is a zero in
the interval (0, 1). Since p(—x) = x* + 5x> + 3x — 1
also has one sign change, p has at most one negative
zero. From p(—1) = 8 and p(0) = —1, we conclude that
there is a zero in the interval (—1, 0). Since p(0) # 0,

p has exactly two real zeros and so, because p has degree
4, it must have two complex (nonreal) zeros as well.
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3. 1fpx) =a,+ax+---+a_x""+ax" thenp'(x) =

45.

47.

a+ta_x+---+ax"+ax"

First note that x~! makes sense since x = 0 is not a
solution of p(x) = 0, by Exercise 44(a). Since p is
palindromic of degree 2n, we have p(x) = a,x*" +
ax™ '+ ---+ax"+---+ax+ a,so, multiplying

0°

by x™", p(x) = 0 can be rewritten as a x" + ax"™' + - - -

ta +--F+ax " V+ax"=00raqx +x")+
a(x'+ x4+ 4+a =0.Itis now enough
to prove that x* + x™" is a polynomial of degree » in
t=x+x'foralln = 1. Forn = 1, it is clear. Assume
that x" + x™" is a polynomial of degree » in ¢, for all

1 =n = k. Then x* + x~* = f(¢), where f has degree &,
and x*! + x %D = ¢ (r), where g has degree k — 1.
Therefore, X! + x ®D = (x + x H(xF + x7%) —

(T + x~®& D) = ¢f(r) —g(t), which is a polynomial
in ¢t of degree k + 1.

(a) From a = e*/° = cos (2m/5) + isin(2m/5)

and o' = e 2™/ = cos(—2m/5) + isin(—2mw/5) =
cos(2m/5) — isin(2m/5), we obtaina + a~!' =
2cos(2m/5).

(©(5-1)/4
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