
Introduction to MATLAB

MATLAB, mathworks.com/products/matlab.html, (short for “MATrix LABoratory”) is a
software program developed and first marketed by a company called MathWorks as far back
as 1984. MATLAB is particularly useful for performing numerical linear algebra calcula-
tions involving vectors and matrices. GNU Octave, octave.org, is an open-source alternative
(clone) of MATLAB that can interpret and execute MATLAB commands. Octave Online,
octave-online.net, is a free web user interface for GNU Octave. We introduce some basic
MATLAB commands, all of which can be executed in Octave or Octave Online.

1 Basic Arithmetic Operations and Format

In MATLAB, commands are entered to the right of the >> prompt and are followed by
pressing <enter>. In Octave Online, the prompt may look different, such as octave:1>.
Calculations can be performed using basic arithmetic operations such as + - * / ^ along
with the use of parentheses (round brackets) for order of operations. For example, to evaluate

2 · 3 + 4

56 − 7
,

enter

>> (2*3+4) /(5^6 -7)

ans = 6.4029e-04

which means the answer is (approximately) 6.4029× 10−4, or about 0.00064029. To express
the answer as a fraction (rational number), we use the command format rat.

>> format rat

>> (2*3+4) /(5^6 -7)

ans = 5/7809

For a decimal answer with many more significant figures (typically 16), we use format long.

>> format long

>> (2*3+4) /(5^6 -7)

ans = 6.402868485081316e-04

The command format short, which is the default setting, will produce the original decimal
answer having fewer significant figures.

1

https://www.mathworks.com/products/matlab.html
https://octave.org/
https://octave-online.net/

After using the format command, all successive calculations will be displayed using the same
format until a new format is selected.

The number π is entered pi. The default format short will display π using four decimal
places, while format rat will approximate π as a fraction.

>> format short

>> pi

ans = 3.1416

>> format rat

>> pi

ans = 355/113

Numbers represented using scientific notation can be entered using e. For example, the
numbers 3.45× 105 and −7.9× 10−4 are entered

>> 3.45e5

ans = 345000

>> -7.9e-4

ans = -7.9000e-04

2 Elementary Functions

The absolute value command is abs. For example,

>> abs(-13)

ans = 13

The factorial command is factorial. For example,

>> factorial (5)

ans = 120

To compute the square root of a number we use sqrt. To compute the nth root of a number
we use nthroot with a second argument being the root n. For example, to evaluate

√
36

and 5
√
32 we enter

>> sqrt (36)

ans = 6

>> nthroot (32,5)

ans = 2

To evaluate an exponential function we use exp and to evaluate a natural logarithmic function
we use log. For logarithms with base 10 we use log10. For example, here are the results of
evaluating e2, ln 3 and log10 100.

>> exp(2)

ans = 7.3891

>> log(3)

ans = 1.0986

2

>> log10 (100)

ans = 2

Trigonometric functions are evaluated using the commands sin, cos, tan, csc, sec and
cot, assuming the angle is in radians. If the angle is in degrees, we append an extra d at
the end, for example sind instead of sin. To evaluate inverse trigonometric functions we
prefix the commands with an a. For example, to evaluate sin−1 (or arcsin) we use asin or
asind depending on whether the answer is to be in radians or degrees, respectively. Consider
the following examples of evaluating sin(π/6), sin(45◦), and sin−1(1) with the answer in the
latter case expressed in radians and then degrees.

>> sin(pi/6)

ans = 0.5000

>> sind (45)

ans = 0.7071

>> asin (1)

ans = 1.5708

>> asind (1)

ans = 90

3 Complex Numbers

The imaginary number i is entered i. Here are some examples of complex number calcula-
tions beginning with evaluating i2 and then adding, multiplying and dividing the complex
numbers 2 + 4i and 3 + 7i.

>> format rat

>> i^2

ans = -1

>> (2+4i)+(3+7i)

ans = 5 + 11i

>> (2+4i)*(3+7i)

ans = -22 + 26i

>> (2+4i)/(3+7i)

ans = 17/29 - 1/29i

The commands real and imag will extract the real and imaginary parts of a complex number,
while conj will return its conjugate.

>> real(8-5i)

ans = 8

>> imag(8-5i)

ans = -5

>> conj(8-5i)

ans = 8 + 5i

Applying abs to a complex number z will evaluate its modulus (magnitude) |z|. Meanwhile,
the command angle will give its argument (phase angle) arg(z) in radians. For example,

3

>> abs (5+12i)

ans = 13

>> angle (5+12i)

ans = 1.1760

Thus, in polar form 5 + 12i ≈ 13e1.1760i.

4 Assignment and Output

Variables can be assigned values using = and used in subsequent calculations. For example,
the following code defines a = 2 and b = 3 and then adds them together.

>> a=2

a = 2

>> b=3

b = 3

>> a+b

ans = 5

The use of a semicolon following a command will suppress its output.

>> a=2;

>> b=3;

>> a+b

ans = 5

Multiple commands can be entered on the same line if separated by commas or, if their
output is to be suppressed, semicolons. For example, the following code defines x = 7 and
y = −5 and then computes and outputs the values of both x2 + y2 and 2xy.

>> x=7;y=-5;x^2+y^2,2*x*y

ans = 74

ans = -70

If no variable is assigned to an output, then the output is assigned the variable ans. For
example,

>> 2+3

ans = 5

>> ans^2

ans = 25

5 Vectors

Vectors are created using square brackets. To create a row vector we separate its components
using either spaces or commas. To create a column vector we separate its components using
semicolons. As before, we can assign names to vectors by using =. Consider the following
examples. The first two commands are equivalent and they define the row vector u while
the third command defines the column vector v.

4

>> u=[1 2 3]

u =

1 2 3

>> u=[1,2,3]

u =

1 2 3

>> v=[1;2;3]

v =

1

2

3

Vectors can be added or subtracted using + and -, while scalar multiplication and division
of vectors are done using * and /. For example,

>> u=[1 2 3];

>> v=[4 5 6];

>> u+v

ans =

5 7 9

>> 7*u

ans =

7 14 21

>> v/2

ans =

2.0000 2.5000 3.0000

>> 8*u-3*v

ans =

-4 1 6

The length (magnitude) of a vector is found using the command norm. For example,

>> u=[1 2 3];

>> norm(u)

ans = 3.7417

which is a decimal approximation of the exact value of
√
14.

The dot product of two vectors and the cross product of two 3-dimensional vectors are found
using the dot and cross commands. For example,

>> u=[1 2 3];

>> v=[4 5 6];

>> dot(u,v)

ans = 32

>> cross(u,v)

ans =

-3 6 -3

5

The following code computes the triple scalar product of three 3-dimensional vectors.

>> u=[1 2 3];v=[4 5 6];w=[1 5 7];

>> dot(u,cross(v,w))

ans = 6

6 Matrices

Matrices are defined like vectors with semicolons used to separate rows. For example, the

matrix A =

[
1 2 3
4 5 6

]
is entered

>> A=[1 2 3; 4 5 6]

A =

1 2 3

4 5 6

Entries in each row can be separated by spaces, as above, or commas.

The size m× n of matrix A is found using the size command.

>> size(A)

ans =

2 3

This confirms that A is a 2× 3 matrix, having 2 rows and 3 columns.

The entry in row i and column j of matrix A can be found by entering A(i,j). Meanwhile, we
can extract the entire ith row of A or jth column of A using A(i,:) and A(:,j), respectively.
For example,

>> A(2,1)

ans = 4

>> A(2,:)

ans =

4 5 6

>> A(:,1)

ans =

1

4

The transpose of matrix A is found using an apostrophe '.

>> A'

ans =

1 4

2 5

3 6

6

Transpose can also be used to convert a row vector into a column vector and vice versa. For
example,

>> v=[1 2 3]'

v =

1

2

3

Addition, subtraction, scalar multiplication and scalar division of matrices are done the same
as with vectors using + - * /. For example,

>> A=[1 2 3; 4 5 6]

A =

1 2 3

4 5 6

>> B=[3 2 1; 6 5 4]

B =

3 2 1

6 5 4

>> A+B

ans =

4 4 4

10 10 10

>> 2*A

ans =

2 4 6

8 10 12

>> B/3

ans =

1.0000 0.6667 0.3333

2.0000 1.6667 1.3333

Matrices are multiplied, assuming their sizes are compatible, by using *. In the following
example, the product AB is defined, but BA is undefined

>> A=[1 2; 3 4]

A =

1 2

3 4

>> B=[5 6 7; 8 9 10]

B =

5 6 7

8 9 10

>> A*B

ans =

21 24 27

47 54 61

7

>> B*A

error...

Positive integer powers of matrices can be computed using ^. For example, for the matrix

A =

[
1 2
3 4

]
, the power A3 = AAA is found using

>> A^3

ans =

37 54

81 118

We can find the inverse of an invertible matrix by using the inv command. For example,

using fractions, if A =

[
1 2
3 4

]
, then B = A−1 can be found as follows.

>> format rat

>> A=[1 2; 3 4]

A =

1 2

3 4

>> B=inv(A)

B =

-2 1

3/2 -1/2

If we multiply A and B together to verify they are inverses, we get

>> A*B

ans =

1 0

* 1

Note the presence of * in the matrix AB. When using format rat, * indicates the number
is too small or too large to be properly displayed using integers or rational numbers. In this
case the entry is zero. However, because MATLAB performs calculations numerically, there
is some possible roundoff error that could indicate the entry is not exactly zero. These are
the results we get if we display the answer using format short or format long.

>> format short

>> A*B

ans =

1.0000 0

0.0000 1.0000

>> format long

>> A*B

ans =

1.000000000000000 0

0.000000000000001 1.000000000000000

8

While * can often be interpreted as zero, at other times it’s a sign that the number is too
large to be displayed using format rat. Consider the following example where we evaluate
A9.

>> A=[1 2; 3 4]

A =

1 2

3 4

>> format rat

>> A^9

ans =

890461 *

* *

>> format long

>> A^9

ans =

890461 1297782

1946673 2837134

7 More on Matrices

An m × n zero matrix can be created using the zeros command, while an n × n identity
matrix can be created using the eye command. For example,

>> A=zeros (2,3)

A =

0 0 0

0 0 0

>> B=eye (4)

B =

Diagonal Matrix

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

A diagonal matrix can be constructed using the diag command by specifying the diagonal
entries using a vector. For example,

>> C=diag ([1 2 3 4])

C =

Diagonal Matrix

1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 4

9

The reduced row echelon form (RREF) of a matrix can be found using the rref command.
For example,

>> A=[1 2 3 4; 5 6 7 8; 9 10 11 12]

A =

1 2 3 4

5 6 7 8

9 10 11 12

>> rref(A)

ans =

1 0 -1 -2

0 1 2 3

0 0 0 0

The rank of a matrix is found using rank. The rank of the previous matrix is 2, as confirmed
by the command

>> rank(A)

ans = 2

For a square matrix, its determinant, trace, and set of eigenvalues are found using det,
trace, and eig, respectively. For example,

>> A=[1 2; 3 4]

A =

1 2

3 4

>> det(A)

ans = -2

>> trace(A)

ans = 5

>> eig(A)

ans =

-0.3723

5.3723

The exact eigenvalues of A =

[
1 2
3 4

]
are λ1 =

5−
√
33

2
≈ −0.3723 and λ2 =

5 +
√
33

2
≈

5.3723. For such a diagonalizable matrix A, the command [P,D]=eig(A) will produce a
diagonal matrix D, whose diagonal entries are the eigenvalues of A, along with a matrix P
whose column vectors are normalized (i.e. unit) eigenvectors corresponding to the eigenvalues
in the same order, whereby P−1AP = D. For example, using the same matrix A we get

>> [P,D]=eig(A)

P =

-0.8246 -0.4160

0.5658 -0.9094

D =

Diagonal Matrix

10

-0.3723 0

0 5.3723

This shows that x1 =

[
−0.8246
0.5658

]
is an eigenvector associated with λ1 and x2 =

[
−0.4160
−0.9094

]
is an eigenvector associated with λ2.

8 Solving Polynomial Equations

The roots command can be used to numerically solve polynomial equations by specifying
the coefficients using a vector. For example, to solve the quadratic equation x2−2x−8 = 0,
we enter

>> roots ([1 -2 -8])

ans =

4

-2

We can use roots to find roots of a real or complex number. For example, to find the fourth
roots of −16i, we note that this is equivalent to solving the equation z4 +16i = 0 and so we
get the following.

>> roots ([1 0 0 0 16i])

ans =

-1.8478 + 0.7654i

-0.7654 - 1.8478i

0.7654 + 1.8478i

1.8478 - 0.7654i

Given a square matrix, the command poly will produce a vector consisting of the coefficients
of the characteristic polynomial det(λI − A). For example,

>> A=[1 2; 3 4]

A =

1 2

3 4

>> poly(A)

ans =

1 -5 -2

From this we conclude that if A =

[
1 2
3 4

]
, then det(λI −A) = λ2 − 5λ− 2, whose roots are

the eigenvalues of A. Using the roots command we get the same answer as we got previously
with the eig command.

>> roots(poly(A))

ans =

5.3723

-0.3723

11

Recall that if A is n × n, then det(A − λI) = (−1)ndet(λI − A), meaning that if n is odd,
then the coefficients of det(A− λI) will be the negative of those found using poly.

9 Solving Linear Systems

Consider the problem of solving a system of linear equations Ax = b. If A is invertible, then
x = A−1b can be found by either entering inv(A)*b or the shortcut A\b. For example, to
solve the system 

x+ 2y − z = 2

3x+ 7y − 5z = 5

−x− 2y = 1

we enter

>> A=[1 2 -1; 3 7 -5; -1 -2 0]

A =

1 2 -1

3 7 -5

-1 -2 0

>> b=[2;5;1]

b =

2

5

1

>> x=inv(A)*b

x =

13

-7

-3

>> x=A\b

x =

13

-7

-3

and so x = 13, y = −7 and z = −3. We could also form the augmented matrix
[
A b

]
using

the code [A b] and row reduce it, as follows, to extract the answer.

>> [A b]

ans =

1 2 -1 2

3 7 -5 5

-1 -2 0 1

>> rref(ans)

ans =

12

1 0 0 13

0 1 0 -7

0 0 1 -3

Note that vertical bars are not displayed in augmented matrices.

* * *

13

	Basic Arithmetic Operations and Format
	Elementary Functions
	Complex Numbers
	Assignment and Output
	Vectors
	Matrices
	More on Matrices
	Solving Polynomial Equations
	Solving Linear Systems

