\qquad SOLUTIONS

Mark:

MATH 251
Assignment 7

1. (4 marks) Suppose

$$
A=\left[\begin{array}{rrrr}
\downarrow & -2 & 3 & 4 \\
2 & -4 & 2 & 4 \\
-1 & 2 & 1 & 0
\end{array}\right] \xrightarrow{\text { PREF }}\left[\begin{array}{rrrr}
1 & -2 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right],
$$

and $W=\operatorname{col}(A)$ is the column space of A.
(a) Find an orthogonal basis for W.
(b) $\operatorname{Find}_{\operatorname{proj}_{W}}(\mathbf{v})$ and $\operatorname{perp}_{W}(\mathbf{v})$, where $\mathbf{v}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.
a) $\left\{\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]\right\}$ is a basis for W, but it's not orthogonal. So we apply Gram-Schmidt. Let $\vec{x}_{1}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$ and $\vec{x}_{2}=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$.

$$
\begin{aligned}
\vec{V}_{1} & =\vec{x}_{1}=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right] \\
\vec{V}_{2} & =\vec{x}_{2}-\operatorname{proj}_{\vec{v}_{1}}\left(\vec{x}_{2}\right)=\vec{x}_{2}-\left(\frac{\vec{x}_{2} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}}\right) \\
& =\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]-\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
2
\end{array}\right] \xrightarrow{\text { scale }}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \vec{v}_{1}=\vec{x}_{1}=[-1] \\
& \vec{v}_{2}=\vec{x}_{2}-\operatorname{proj}_{\vec{v}_{1}}\left(\vec{x}_{2}\right)=\vec{x}_{2}-\left(\frac{\vec{x}_{2} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}}\right) \vec{v}_{1}=\vec{x}_{2}-\frac{6}{6} \vec{v}_{1}=\vec{x}_{2}-\vec{v}_{1} \\
&
\end{aligned}
$$

\therefore An orthogonal basis for W is $\left\{\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$
b)

$$
\begin{aligned}
& \operatorname{proj}_{W}(\vec{v})=\operatorname{proj}_{v_{1}}(\vec{v})+\operatorname{proj}_{\vec{v}_{2}}(\vec{v})=\binom{\vec{v} \cdot \vec{v}_{1}}{\overrightarrow{v_{1}} \cdot \vec{v}_{1}} \overrightarrow{V_{1}}+\binom{\vec{V} \cdot \vec{v}_{2}}{\vec{v}_{2} \cdot \vec{v}_{2}} \vec{v}_{2} \\
& =\frac{2}{6} \overrightarrow{V_{1}}+\frac{4}{2} \vec{V}_{2}=\frac{1}{3} \vec{v}_{1}+2 \vec{v}_{2}=\frac{1}{3}\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]+2\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
7 / 3 \\
2 / 3 \\
5 / 3
\end{array}\right] \text { or } \frac{1}{3}\left[\begin{array}{l}
7 \\
2 \\
5
\end{array}\right] \\
& \operatorname{perp}_{w}(\vec{v})=\vec{v}-\operatorname{proj}_{w}(\vec{v})=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]-\left[\begin{array}{c}
7 / 3 \\
2 / 3 \\
5 / 3
\end{array}\right]=\left[\begin{array}{c}
-4 / 3 \\
4 / 3 \\
4 / 3
\end{array}\right] \text { or } \frac{4}{3}\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]
\end{aligned}
$$

2. (5 marks) Find a QR factorization of $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$.
$\vec{x}_{1} \vec{x}_{2} \vec{x}_{3}$
Let $\vec{V}_{1}=\vec{x}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$

$$
\begin{aligned}
& \vec{V}_{2}=\vec{x}_{2}-\operatorname{proj}_{\vec{V}_{1}}\left(\vec{x}_{2}\right)=\vec{x}_{2}-\left(\frac{\vec{x}_{2} \cdot \vec{V}_{1}}{\vec{V}_{1} \cdot \vec{V}_{1}}\right) \overrightarrow{V_{1}}=\vec{x}_{2}-\frac{3}{4} \vec{V}_{1}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]-\frac{3}{4}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-3 / 4 \\
1 / 4 \\
1 / 4 \\
1 / 4
\end{array}\right] \xrightarrow{\text { scale }}\left[\begin{array}{c}
-3 \\
1 \\
1 \\
1
\end{array}\right] \\
& \vec{v}_{3}=\vec{x}_{3}-\operatorname{proj}_{\vec{v}_{1}}\left(\vec{x}_{3}\right)-\operatorname{proj} \vec{v}_{2}\left(\vec{x}_{3}\right)=\vec{x}_{3}-\left(\frac{\overrightarrow{x_{3}} \cdot \overrightarrow{v_{1}}}{\overrightarrow{v_{1}} \cdot \overrightarrow{v_{1}}}\right) \overrightarrow{v_{1}}-\left(\frac{\overrightarrow{x_{3}} \cdot \overrightarrow{v_{2}}}{\overrightarrow{\vec{v}_{2}} \cdot \overrightarrow{v_{2}}}\right) \overrightarrow{v_{2}} \\
& =\vec{x}_{3}-\frac{2}{4} \vec{V}_{1}-\frac{2}{12} \vec{V}_{2}=\vec{x}_{3}-\frac{1}{2} \vec{V}_{1}-\frac{1}{6} \vec{V}_{2} \\
& =\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]-\frac{1}{6}\left[\begin{array}{c}
-3 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-2 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right] \xrightarrow{\text { scale }}\left[\begin{array}{c}
0 \\
-2 \\
1 \\
1
\end{array}\right] \\
& Q=\left[\frac{1}{\left\|\vec{V}_{1}\right\|} \vec{V}_{1}\left|\frac{1}{\left\|\vec{V}_{2}\right\|} \vec{V}_{2}\right| \frac{1}{\left\|\vec{V}_{3}\right\|} \vec{V}_{3}\right]=\left[\frac{1}{2} \vec{V}_{3}\left|\frac{1}{2 \sqrt{3}} \vec{V}_{2}\right| \frac{1}{\sqrt{6}} \vec{V}_{3}\right]=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{-3}{2 \sqrt{3}} & 0 \\
\frac{1}{2} & \frac{1}{2 \sqrt{3}} & -\frac{2}{\sqrt{6}} \\
\frac{1}{2} & \frac{1}{2 \sqrt{3}} & \frac{1}{\sqrt{6}} \\
\frac{1}{2} & \frac{1}{2 \sqrt{3}} & \frac{1}{\sqrt{6}}
\end{array}\right] \\
& R=Q^{\top} A=\left[\begin{array}{cccc}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
-\frac{3}{2 \sqrt{3}} & \frac{1}{2 \sqrt{3}} & \frac{1}{2 \sqrt{3}} & \frac{1}{2 \sqrt{3}} \\
0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
2 & 3 / 2 & 1 \\
0 & 3 / 2 \sqrt{3} & 1 / \sqrt{3} \\
0 & 0 & 2 / \sqrt{6}
\end{array}\right] \\
& \therefore A=Q R=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{-3}{2 \sqrt{3}} & 0 \\
\frac{1}{2} & \frac{1}{2 \sqrt{3}} & \frac{-2}{\sqrt{6}} \\
\frac{1}{2} & \frac{1}{2 \sqrt{3}} & \frac{1}{\sqrt{6}} \\
\frac{1}{2} & \frac{1}{2 \sqrt{3}} & \frac{1}{\sqrt{6}}
\end{array}\right]\left[\begin{array}{ccc}
2 & 3 / 2 & 1 \\
0 & \frac{3}{2 \sqrt{3}} & \frac{1}{\sqrt{3}} \\
0 & 0 & \frac{2}{\sqrt{6}}
\end{array}\right]
\end{aligned}
$$

3. (4 marks) Orthogonally diagonalize the following matrix, whose characteristic polynomial is $-(\lambda-2)(\lambda-8)^{2}$, by finding an orthogonal matrix Q and a diagonal matrix D such that

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
5 & 0 & 3 \\
0 & 8 & 0 \\
3 & 0 & 5
\end{array}\right] \\
& \left.\lambda_{1}=2\right) A-\lambda_{1} I=\left[\begin{array}{lll}
3 & 0 & 3 \\
0 & 6 & 0 \\
3 & 0 & 3
\end{array}\right] \text { Solve }\left(A-\lambda_{1} I\right) \vec{x}=\overrightarrow{0} \\
& {\left[\begin{array}{lll|l}
3 & 0 & 3 & 0 \\
0 & 6 & 0 & 0 \\
3 & 0 & 3 & 0
\end{array}\right] \rightarrow \begin{array}{l}
\frac{1}{3} R_{1} \\
\frac{1}{6} R_{2} \\
R_{3}-R_{1}
\end{array}\left[\begin{array}{lll|l}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \begin{array}{l}
x=-t \\
y=0 \\
z=t
\end{array} \quad \vec{x}=t\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]}
\end{aligned}
$$

Basis for $E_{\lambda_{1}}$ is $\left\{\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}$

$$
\begin{aligned}
& \left.\lambda_{2}=8\right] A-\lambda_{2} I=\left[\begin{array}{ccc}
-3 & 0 & 3 \\
0 & 0 & 0 \\
3 & 0 & -3
\end{array}\right] \quad \text { Solve }\left(A-\lambda_{2} I\right) \vec{x}=\overrightarrow{0} \\
& \left.\left[\begin{array}{ccc|c}
-3 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 \\
3 & 0 & -3 & 0
\end{array}\right] \rightarrow \begin{array}{l}
-\frac{1}{3} R_{1}
\end{array} \begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
R_{3}+R_{1} & x=t \\
0 & 0 & 0 & 0
\end{array}\right] \quad \vec{x}=s=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

$$
\text { Basis for } E_{\lambda_{2}} \text { is }\left\{\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\}
$$

Already orthogonal, so no need for Gram-Schmidt.
Let $\vec{v}_{1}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \vec{v}_{3}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$.

$$
\text { Then } \begin{aligned}
Q & =\left[\frac{1}{\left\|\vec{v}_{1}\right\|} \vec{V}_{1}\left|\frac{1}{\left\|\vec{v}_{2}\right\|} \vec{V}_{2}\right| \frac{1}{\left\|\vec{v}_{3}\right\|} \vec{V}_{3}\right]=\left[\frac{1}{\sqrt{2}} \vec{v}_{1}\left|\vec{V}_{2}\right| \frac{1}{\sqrt{2}} \vec{v}_{3}\right] \\
& =\left[\begin{array}{ccc}
-\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{array}\right] \quad \text { and } D=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 8 & 0 \\
0 & 0 & 8
\end{array}\right] .
\end{aligned}
$$

Then $Q^{\top} A Q=D$.
4. (5 marks) Suppose A is a 3×3 symmetric matrix having eigenvalues $\lambda_{1}=-9$ and $\lambda_{2}=9$ and corresponding eigenspaces $E_{\lambda_{1}}=\operatorname{span}\left(\left[\begin{array}{r}-2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}-2 \\ 0 \\ 1\end{array}\right]\right)$ and $E_{\lambda_{2}}=\operatorname{span}\left(\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]\right)$.
(a) Orthogonally diagonalize A by finding an orthogonal matrix Q and a diagonal matrix D such that $Q^{T} A Q=D$.
(b) Find A.
a) Basis for $E_{\lambda_{1}}$ is not orthogonal, so we apply Gram-Schmidt.

$$
\begin{aligned}
& \text { Let } \vec{x}_{1}=\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right] \text { and } \vec{x}_{2}=\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right] . \\
& \begin{aligned}
\vec{V}_{1} & =\vec{x}_{1}=\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right] \\
\vec{V}_{2} & =\vec{x}_{2}-\operatorname{proj}_{v_{1}}\left(\vec{x}_{2}\right)=\vec{x}_{2}-\left(\frac{\vec{x}_{2} \cdot \vec{v}_{1}}{\overrightarrow{v_{1}} \cdot \overrightarrow{v_{1}}}\right) \vec{V}_{1}=\vec{x}_{2}-\frac{4}{5} \vec{V}_{1} \\
& =\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]-\frac{4}{5}\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-2 / 5 \\
-4 / 5 \\
1
\end{array}\right] \xrightarrow{\text { scale }}\left[\begin{array}{c}
-2 \\
-4 \\
5
\end{array}\right]
\end{aligned}
\end{aligned}
$$

$$
\text { Let } \vec{V}_{3}=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right] \text { from } E_{\lambda_{2}}
$$

Then $Q=\left[\frac{1}{\left\|\vec{V}_{1}\right\|} \vec{V}_{1}\left|\frac{1}{\left\|\vec{V}_{2}\right\|} \vec{V}_{2}\right| \frac{1}{\left\|\vec{V}_{3}\right\|} \vec{V}_{3}\right]=\left[\frac{1}{\sqrt{5}} \vec{V}_{1}\left|\frac{1}{3 \sqrt{5}} \vec{V}_{2}\right| \frac{1}{3} \vec{V}_{3}\right]$

$$
=\left[\begin{array}{ccc}
-\frac{2}{\sqrt{5}} & \frac{-2}{3 \sqrt{5}} & \frac{1}{3} \\
\frac{1}{\sqrt{5}} & -\frac{4}{3 \sqrt{5}} & \frac{2}{3} \\
0 & \frac{5}{3 \sqrt{5}} & \frac{2}{3}
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{ccc}
-9 & 0 & 0 \\
0 & -9 & 0 \\
0 & 0 & 9
\end{array}\right]
$$

b)

$$
\text { b) } \begin{aligned}
A=Q D Q^{\top} & =\left[\begin{array}{ccc}
-\frac{2}{\sqrt{5}} & \frac{-2}{3 \sqrt{5}} & \frac{1}{3} \\
\frac{1}{\sqrt{5}} & -\frac{4}{3 \sqrt{5}} & \frac{2}{3} \\
0 & \frac{5}{3 \sqrt{5}} & \frac{2}{3}
\end{array}\right]\left[\begin{array}{ccc}
-9 & 0 & 0 \\
0 & -9 & 0 \\
0 & 0 & 9
\end{array}\right]\left[\begin{array}{ccc}
-\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 \\
-\frac{2}{3 \sqrt{5}} & -\frac{4}{3 \sqrt{5}} & \frac{5}{3 \sqrt{5}} \\
\frac{1}{3} & \frac{2}{3} & \frac{2}{3}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\frac{18}{\sqrt{5}} & \frac{6}{\sqrt{5}} & 3 \\
-\frac{9}{\sqrt{5}} & \frac{12}{\sqrt{5}} & 6 \\
0 & -\frac{15}{\sqrt{5}} & 6
\end{array}\right]\left[\begin{array}{ccc}
-\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 \\
-\frac{2}{3 \sqrt{5}} & \frac{-4}{3 \sqrt{5}} & \frac{5}{3 \sqrt{5}} \\
\frac{1}{3} & \frac{2}{3} & \frac{2}{3}
\end{array}\right]=\left[\begin{array}{ccc}
-7 & 4 & 4 \\
4 & -1 & 8 \\
4 & 8 & -1
\end{array}\right]
\end{aligned}
$$

5. (3 marks) Find the least squares solution of the following inconsistent linear system.

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & 1 & -2 \\
1 & 2 & 1 \\
2 & -1 & 1 \\
1 & -1 & -1
\end{array}\right] \quad \begin{array}{c}
x-2 z=21 \\
2 x-2 y+z=7 \\
x-y+z=98
\end{array} \\
& \vec{b}=\left[\begin{array}{c}
21 \\
7 \\
98 \\
91
\end{array}\right] \\
& \therefore\left(A^{\top} A\right)^{-1}=\frac{1}{7} 工 \\
& A^{\top} A=\left[\begin{array}{cccc}
1 & 1 & 2 & 1 \\
1 & 2 & -1 & -1 \\
-2 & 1 & 1 & -1
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & -2 \\
1 & 2 & 1 \\
2 & -1 & 1 \\
1 & -1 & -1
\end{array}\right]=\left[\begin{array}{ccc}
7 & 0 & 0 \\
0 & 7 & 0 \\
0 & 0 & 7
\end{array}\right]=7 I \\
& A^{\top} \vec{b}=\left[\begin{array}{ccc}
1 & 1 & 2 \\
1 & 2 & -1 \\
-2 & 1 & 1 \\
-1
\end{array}\right]\left[\begin{array}{c}
21 \\
7 \\
98 \\
91
\end{array}\right]=\left[\begin{array}{c}
315 \\
-154 \\
-28
\end{array}\right] \\
& \overrightarrow{X_{L S}}=\left(A^{\top} A\right)^{-1}\left(A^{\top} \vec{b}\right)=\left(\begin{array}{l}
\left.\frac{1}{7} I\right)\left(A^{\top} \vec{b}\right)=\frac{1}{7}\left[\begin{array}{c}
315 \\
-154 \\
-28
\end{array}\right]=\left[\begin{array}{c}
45 \\
-22 \\
-4
\end{array}\right]
\end{array} \$.\right.
\end{aligned}
$$

6. (4 marks) Find the least squares approximating line for the points

$$
(-4,3),(-2,-1),(-1,-2),(0,1),(2,4)
$$

and compute the corresponding least squares error, rounded to two decimal places:
Want $y=a+b x$, where

$$
\begin{aligned}
& (-4,3) \quad a-4 b=3 \\
& (-2,-1) \quad a-2 b=-1 \\
& \begin{aligned}
(-1,-2) a-b & =-2 \\
(0,1) a & =1
\end{aligned} \Rightarrow\left[\begin{array}{ll}
1 & -2 \\
1 & -1 \\
1 & 0 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-2 \\
1 \\
4
\end{array}\right] \\
& (2,4) \quad a+2 b=4 \\
& A^{\top} A=\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
-4 & -2 & -1 & 0 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & -4 \\
1 & -2 \\
1 & -1 \\
1 & 0 \\
1 & 2
\end{array}\right]=\left[\begin{array}{rr}
5 & -5 \\
-5 & 25
\end{array}\right] \\
& \left(A^{\top} A\right)^{-1}=\frac{1}{100}\left[\begin{array}{rr}
25 & 5 \\
5 & 5
\end{array}\right]=\frac{1}{20}\left[\begin{array}{ll}
5 & 1 \\
1 & 1
\end{array}\right] \\
& A^{\top} \stackrel{\rightharpoonup}{b}=\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
-4 & -2 & -1 & 0 & 2
\end{array}\right]\left[\begin{array}{c}
3 \\
-1 \\
-2 \\
1 \\
4
\end{array}\right]=\left[\begin{array}{l}
5 \\
0
\end{array}\right] \\
& \vec{X}_{L S}=\left(A^{\top} A\right)^{-1}\left(A^{\top} \vec{b}\right)=\frac{1}{20}\left[\begin{array}{ll}
5 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
5 \\
0
\end{array}\right]=\frac{1}{20}\left[\begin{array}{c}
25 \\
5
\end{array}\right]=\frac{1}{4}\left[\begin{array}{l}
5 \\
1
\end{array}\right]=\left[\begin{array}{c}
5 / 4 \\
1 / 4
\end{array}\right] \\
& \therefore \quad y=\frac{5}{4}+\frac{1}{4} x \quad \text { (best-fit line) } \\
& A \vec{X}_{L S}=\left[\begin{array}{cc}
1 & -4 \\
1 & -2 \\
1 & -1 \\
1 & 0 \\
1 & 2
\end{array}\right]\left[\begin{array}{c}
5 / 4 \\
1 / 4
\end{array}\right]=\left[\begin{array}{c}
1 / 4 \\
3 / 4 \\
1 \\
5 / 4 \\
7 / 4
\end{array}\right] ; \quad \vec{e}=\vec{b}-A \vec{x}_{L S}=\left[\begin{array}{c}
3 \\
-1 \\
-2 \\
1 \\
4
\end{array}\right]-\left[\begin{array}{c}
1 / 4 \\
3 / 4 \\
1 \\
5 / 4 \\
7 / 4
\end{array}\right]=\left[\begin{array}{c}
11 / 4 \\
-7 / 4 \\
-3 \\
-1 / 4 \\
9 / 4
\end{array}\right] \\
& \|\vec{e}\|=\frac{1}{4} \sqrt{11^{2}+(-7)^{2}+(-12)^{2}+(-1)^{2}+9^{2}}=\frac{1}{4} \sqrt{396}=\frac{3}{2} \sqrt{11} \approx 4.97 \quad \text { (error) }
\end{aligned}
$$

