Name: \qquad

Mark:
25

MATH 251
 Assignment 6

1. (9 marks) Consider the matrix

$$
A=\left[\begin{array}{rrr}
-3 & -4 & 4 \\
4 & 5 & -4 \\
2 & 2 & -1
\end{array}\right]
$$

(a) Find the eigenvalues of A.
(b) Is A invertible? Briefly explain.
(c) Find the eigenspaces corresponding to each eigenvalue of A.
(d) Is A diagonalizable? Briefly explain. If A is diagonalizable, then find an invertible matrix P and a diagonal matrix D so that $P^{-1} A P=D$.
(e) Evaluate A^{100}.
2. (4 marks) Find the eigenvalues and corresponding eigenspaces of $A=\left[\begin{array}{rr}3 & -5 \\ 1 & 7\end{array}\right]$.
3. (2 marks) For what value(s) of k (if any) is the set

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
k \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
1 \\
-k \\
1
\end{array}\right],\left[\begin{array}{r}
-1 \\
k \\
2
\end{array}\right]\right\}
$$

an orthogonal basis of \mathbb{R}^{3} ?
4. (2 marks) Consider the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
-1 \\
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
1 \\
-1 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{r}
1 \\
1 \\
-1 \\
1
\end{array}\right], \quad \mathbf{v}_{4}=\left[\begin{array}{r}
1 \\
1 \\
1 \\
-1
\end{array}\right], \quad \text { and } \quad \mathbf{u}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

and note that $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ forms an orthogonal basis of \mathbb{R}^{4}. Express \mathbf{u} as a linear combination of these basis vectors. Give the coordinate vector $[\mathbf{u}]_{\mathcal{B}}$ of \mathbf{u} with respect to \mathcal{B}.
5. (1 mark) Find the inverse of the following orthogonal matrix.

$$
A=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

6. (3 marks) Find a basis for W^{\perp} if $W=\operatorname{span}\left(\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right)$ and

$$
\mathbf{w}_{1}=\left[\begin{array}{r}
1 \\
3 \\
-9 \\
6
\end{array}\right], \quad \mathbf{w}_{2}=\left[\begin{array}{r}
-1 \\
-2 \\
6 \\
-4
\end{array}\right], \quad \mathbf{w}_{3}=\left[\begin{array}{r}
2 \\
7 \\
-21 \\
14
\end{array}\right] .
$$

7. (4 marks) Consider the vectors

$$
\mathbf{u}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
2 \\
-1
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{r}
-2 \\
2 \\
3 \\
2
\end{array}\right], \quad \mathbf{u}_{3}=\left[\begin{array}{r}
1 \\
2 \\
0 \\
-1
\end{array}\right], \quad \text { and } \quad \mathbf{v}=\left[\begin{array}{r}
-7 \\
-8 \\
7 \\
1
\end{array}\right] .
$$

Suppose $\mathcal{B}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is a basis for a subspace W of \mathbb{R}^{4}. Note that \mathcal{B} is an orthogonal set.
(a) Find the orthogonal projection of \mathbf{v} onto W.
(b) Find the orthogonal decomposition of \mathbf{v} with respect to W; in other words, find vectors \mathbf{a} in W and \mathbf{b} in W^{\perp} such that $\mathbf{v}=\mathbf{a}+\mathbf{b}$.
(c) Find an orthonormal basis for W.

