MATH 251
Assignment 5

1. (1 mark) Write $-3 i$ in phasor form using degrees and then evaluate the product $(-3 i)\left(5 / 25^{\circ}\right)$. Express your answer in phasor form.

$$
\begin{aligned}
& -3 i=3 \angle 270^{\circ} \\
& \therefore(-3 i)\left(5 \angle 25^{\circ}\right)=\left(3 \angle 270^{\circ}\right)\left(5 \angle 25^{\circ}\right)=15 \angle 295^{\circ}
\end{aligned}
$$

2. (3 marks) Evaluate $(1-i \sqrt{3})^{14}$. Express your answer in both Euler and rectangular form, using exact values in both cases.

$$
\begin{aligned}
& r=\sqrt{1^{2}+(-\sqrt{3})^{2}}=2 \\
& \left.\alpha=\tan ^{-1} \frac{\sqrt{3}}{1}=\frac{\pi}{3} \quad \therefore \theta=2 \pi-\alpha=\frac{5 \pi}{3} \quad \text { (or }-\frac{\pi}{3}\right) \\
& \therefore 1-i \sqrt{3}=2 e^{i \frac{5 \pi}{3}}
\end{aligned}
$$

$$
(1-i \sqrt{3})^{14}=\left(2 e^{i \frac{5 \pi}{3}}\right)^{14}=2^{14} e^{i \frac{70 \pi}{3}}=16384 e^{i \frac{70}{3} \pi} \text { or } 16384 e^{i \frac{4 \pi}{3}}
$$

(where $\frac{4 \pi}{3}$ and $\frac{70 \pi}{3}$ are coterminal angles; could also use $\frac{-2 \pi}{3}$)
In rectangular form

$$
\begin{aligned}
16384 e^{i \frac{4 \pi}{3}} & =16384\left(\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}\right)=16384\left(-\frac{1}{2}-i \frac{\sqrt{3}}{2}\right) \\
& =-8192-8192 i \sqrt{3}
\end{aligned}
$$

3. (4 marks) Find all the cube roots of $44+117 i$. Express each root in the rectangular form $a+b i$ with a and b rounded to three decimal places. Plot each of the roots in the complex plane.

Let $z^{3}=44+117 i$

$$
\begin{aligned}
& r=\sqrt{44^{2}+117^{2}}=125 \\
& \theta=\tan ^{-1}\left(\frac{117}{44}\right) \approx 1.21109 \\
& \therefore z^{3}=125 e^{1.21109 i}
\end{aligned}
$$

$1^{\text {st }}$ root is $z_{1}=\sqrt[3]{125} e^{\frac{1.21109}{3} i}=5 e^{0.4037 i}$

$$
=5(\cos 0.4037+i \sin 0.4037)=4.598+1.964 i
$$

$2^{\text {nd }}$ coot is $z_{2}=\sqrt[3]{125} e^{\left(0.4037+\frac{2 \pi}{3}\right) i}=5 e^{2.4981 i}$

$$
=5(\cos 2.4981+i \sin 2.4981)=-4+3 i
$$

$3^{\text {rd }}$ root is $z_{3}=\sqrt[3]{125} e^{\left(0.4037+\frac{4 \pi}{3}\right) i}=5 e^{4.5925 i}$

$$
=5(\cos 4.5925+i \sin 4.5925)=-0.598-4.964 i
$$

4. (2 marks) Suppose $z_{1}=a_{1}+b_{1} i$ and $z_{2}=a_{2}+b_{2} i$. Express the quotient $z=z_{1} / z_{2}$ in the form $a+b i$.

$$
\begin{aligned}
z & =\frac{a_{1}+b_{1} i}{a_{2}+b_{2} i} \cdot \frac{a_{2}-b_{2} i}{a_{2}-b_{2} i}=\frac{a_{1} a_{2}-a_{1} b_{2} i+a_{2} b_{1} i+b_{1} b_{2}}{a_{2}^{2}+b_{2}^{2}} \quad\left(u \operatorname{sing} i^{2}=-1\right) \\
& =\left(\frac{a_{1} a_{2}+b_{1} b_{2}}{a_{2}^{2}+b_{2}^{2}}\right)+\left(\frac{a_{2} b_{1}-a_{1} b_{2}}{a_{2}^{2}+b_{2}^{2}}\right) i
\end{aligned}
$$

5. (2 marks) Show that $\mathbf{v}=\left[\begin{array}{r}-3 \\ 0 \\ 1\end{array}\right]$ is an eigenvector of $A=\left[\begin{array}{rrr}4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8\end{array}\right]$ and find the corresponding eigenvalue.

$$
A \vec{v}=\left[\begin{array}{rrr}
4 & -1 & 6 \\
2 & 1 & 6 \\
2 & -1 & 8
\end{array}\right]\left[\begin{array}{r}
-3 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
-6 \\
0 \\
2
\end{array}\right]=2\left[\begin{array}{r}
-3 \\
0 \\
1
\end{array}\right]
$$

$\therefore \vec{V}$ is an eigenvector of A with associated eigenvalue $\lambda=2$
6. (4 marks) Suppose $\lambda_{1}=3$ is an eigenvalue of $A=\left[\begin{array}{rr}4 & 5 \\ -2 & k\end{array}\right]$.
(a) Find k.
(b) Find the other eigenvalue, λ_{2}.
(c) Find one eigenvector associated with each eigenvalue λ_{1} and λ_{2}.
a) $\operatorname{det}(A-\lambda, I)=\left|\begin{array}{cc}4-3 & 5 \\ -2 & k-3\end{array}\right|=\left|\begin{array}{cc}1 & 5 \\ -2 & k-3\end{array}\right|=(K-3)+10=k+7=0 \Rightarrow K=-7$
b)

$$
\begin{array}{r}
A=\left[\begin{array}{cc}
4 & 5 \\
-2 & -7
\end{array}\right] \quad \operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
4-\lambda & 5 \\
-2 & -7-\lambda
\end{array}\right|=(4-\lambda)(-7-\lambda)+10 \\
=\lambda^{2}+3 \lambda-28+10=\lambda^{2}+3 \lambda-18=(\lambda-3)(\lambda+6)=0 \\
\Rightarrow \lambda=3 \text { or }-6 \quad \therefore \lambda_{2}=-6
\end{array}
$$

c) $\lambda_{1}=3 \quad A-\lambda_{1} I=\left[\begin{array}{cc}1 & 5 \\ -2 & -10\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
1 & 5 & 0 \\
-2 & -10 & 0
\end{array}\right] \rightarrow{ }_{R_{2}+2 R_{1}}\left[\begin{array}{ll|l}
1 & 5 & 0 \\
0 & 0 & 0
\end{array}\right] \quad x=-5 t, y=t} \\
& \vec{x}=\left[\begin{array}{c}
-5 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-5 \\
1
\end{array}\right] \quad \therefore \vec{x}_{1}=\left[\begin{array}{c}
-5 \\
1
\end{array}\right] \text { is an eigenvector for } \lambda_{1}=3 \\
& \lambda_{2}=-6 \quad A \cdot \lambda_{2} I=\left[\begin{array}{cc}
10 & 5 \\
-2 & -1
\end{array}\right] \\
& {\left[\begin{array}{cc|c}
10 & 5 & 0 \\
-2 & -1 & 0
\end{array}\right] \rightarrow \frac{1}{10} R_{1}\left(\begin{array}{cc|c}
1 & 1 / 2 & 0 \\
R_{2}+\frac{1}{5} R_{1} & 0 & 0
\end{array}\right] \quad x=-\frac{1}{2} t, y=t} \\
& \vec{x}=\left[\begin{array}{c}
-\frac{1}{2} t \\
t
\end{array}\right]=\frac{1}{2} t\left[\begin{array}{c}
-1 \\
2
\end{array}\right] \quad \therefore \vec{x}_{2}=\left[\begin{array}{c}
-1 \\
2
\end{array}\right] \text { is an eigenvector for } \lambda_{2}=-6
\end{aligned}
$$

7. (3 marks) Use Cramer's Rule to solve the following system.

$$
\begin{aligned}
& \left\{\begin{aligned}
x_{1}-3 x_{2}+x_{3} & =4 \\
2 x_{1}-x_{2} & =-2 \\
4 x_{1}-3 x_{3} & =0
\end{aligned}\right. \\
& A=\left[\begin{array}{ccc}
1 & -3 & 1 \\
2 & -1 & 0 \\
4 & 0 & -3
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
4 \\
-2 \\
0
\end{array}\right] \\
& A_{1}(\vec{b})=\left[\begin{array}{ccc}
4 & -3 & 1 \\
-2 & -1 & 0 \\
0 & 0 & -3
\end{array}\right], A_{2}(\vec{b})=\left[\begin{array}{ccc}
1 & 4 & 1 \\
2 & -2 & 0 \\
4 & 0 & -3
\end{array}\right], A_{3}(\vec{b})=\left[\begin{array}{ccc}
1 & -3 & 4 \\
2 & -1 & -2 \\
4 & 0 & 0
\end{array}\right] \\
& \operatorname{det}(A)=4\left|\begin{array}{ll}
-3 & 1 \\
-1 & 0
\end{array}\right|+(-3)\left|\begin{array}{ll}
1 & -3 \\
2 & -1
\end{array}\right|=4(1)+(-3)(5)=-11 \\
& \operatorname{det}\left(A_{1}(\vec{b})\right)=(-3)\left|\begin{array}{rr}
4 & -3 \\
-2 & -1
\end{array}\right|=(-3)(-10)=30 \\
& \operatorname{det}\left(A_{2}(\vec{b})\right)=4\left|\begin{array}{cc}
4 & 1 \\
-2 & 0
\end{array}\right|+(-3)\left|\begin{array}{cc}
1 & 4 \\
2 & -2
\end{array}\right|=4(2)+(-3)(-10)=38 \\
& \operatorname{det}\left(A_{3}(\vec{b})\right)=4\left|\begin{array}{cc}
-3 & 4 \\
-1 & -2
\end{array}\right|=4(10)=40 \\
& \therefore \quad x_{1}=\frac{30}{-11}, \quad x_{2}=\frac{38}{-11}, \quad x_{3}=\frac{40}{-11} \\
& \vec{x}=\left[\begin{array}{l}
-30 / 11 \\
-38 / 11 \\
-40 / 11
\end{array}\right] \text { or }-\frac{2}{11}\left[\begin{array}{l}
15 \\
19 \\
20
\end{array}\right]
\end{aligned}
$$

8. (4 marks) Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & \tan \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]
$$

(a) Find and simplify $\operatorname{det}(A)$.
(b) Use the cofactor method to find A^{-1}.
a) $\operatorname{det}(A)=1 \cdot\left|\begin{array}{cc}1 & \tan \theta \\ -\sin \theta & \cos \theta\end{array}\right|=\cos \theta+\tan \theta \cdot \sin \theta$

$$
=\cos \theta+\frac{\sin ^{2} \theta}{\cos \theta}=\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos \theta}=\frac{1}{\cos \theta}=\sec \theta
$$

b)

$$
\left.\left.\left.\begin{array}{rl}
C & =\left[\begin{array} { c c }
{ + | \begin{array} { c c }
{ 1 } & { 0 } \\
{ 0 } & { \operatorname { c o s } \theta }
\end{array} | } & { - | \begin{array} { c c }
{ 0 } & { 0 } \\
{ - \operatorname { s i n } \theta } & { \operatorname { c o s } \theta }
\end{array} | } \\
{ - | \begin{array} { c c }
{ 0 } & { \operatorname { t a n } \theta } \\
{ 0 } & { \operatorname { c o s } \theta }
\end{array} | + | \begin{array} { c c }
{ 1 } & { \operatorname { t a n } \theta } \\
{ - \operatorname { s i n } \theta } & { \operatorname { c o s } \theta }
\end{array} | - | \begin{array} { c c }
{ 0 } & { 1 } \\
{ - \operatorname { s i n } \theta } & { 0 }
\end{array} | } \\
{ + | \begin{array} { c c }
{ 1 } & { 0 } \\
{ - \operatorname { s i n } \theta } & { 0 }
\end{array} | } \\
{ 1 } & { 0 }
\end{array} \left|-\left|\begin{array}{cc}
1 & \tan \theta \\
0 & 0
\end{array}\right|\right.\right. \\
1 & 0 \\
0 & 1
\end{array} \right\rvert\,\right]\left[\begin{array}{ccc}
1
\end{array}\right] \quad \begin{array}{ccc}
0 & \cos \theta+\sin \theta \tan \theta & 0 \\
-\tan \theta & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & \sec \theta & 0 \\
-\tan \theta & 0 & 1
\end{array}\right]
$$

9. (2 marks) Use determinants to find the volume of the parallelepiped formed by the vectors

$$
\begin{gathered}
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
-2 \\
3
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
5 \\
1 \\
-7
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{r}
1 \\
6 \\
0
\end{array}\right] . \\
\left|\begin{array}{rrr}
1 & -2 & 3 \\
5 & 1 & -7 \\
1 & -6 & 0
\end{array}\right|=1\left|\begin{array}{rr}
-2 & 3 \\
1 & -7
\end{array}\right|-(-6)\left|\begin{array}{cc}
1 & 3 \\
5 & -7
\end{array}\right|=1(11)+6(-22)=-121 \\
\therefore \text { Volume }=|-121|=121
\end{gathered}
$$

