MATH 251
Assignment 4

1. (3 marks) Find an $L U$ factorization of $A=\left[\begin{array}{rrr}3 & -7 & -2 \\ -3 & 5 & 1 \\ -6 & -4 & 0\end{array}\right]$.

$$
\begin{array}{cl}
A \rightarrow & R_{2}+R_{1}\left[\begin{array}{ccc}
3 & -7 & -2 \\
0 & -2 & -1 \\
R_{3}+2 R_{1} & -18 & -4
\end{array}\right] \rightarrow \\
& \left.L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-2 & 9 & 1
\end{array}\right] \quad \therefore \begin{array}{ccc}
3 & -7 & -2 \\
0 & -2 & -1 \\
0 & 0 & 5
\end{array}\right]=U
\end{array}
$$

2. (3 marks) Solve the following system using the $L U$ method.

$$
\begin{gathered}
{\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
3 & 7 & 2 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
4 \\
-2 \\
1
\end{array}\right] \text { Let } \vec{y}=U \vec{x}} \\
L
\end{gathered}
$$

(i) Solve $L \vec{y}=\vec{b} \quad\left[\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 1 & 1\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]=\left[\begin{array}{c}4 \\ -2 \\ 1\end{array}\right]$

$$
\begin{aligned}
& y_{1}=4 \\
& 2 y_{1}+y_{2}=-2 \Rightarrow 8+y_{2}=-2 \Rightarrow y_{2}=-10 \\
& -y_{1}+y_{2}+y_{3}=1 \Rightarrow-4+(-10)+y_{3}=1 \Rightarrow y_{3}=15
\end{aligned}
$$

(ii) Solve $U \vec{x}=\vec{y}\left[\begin{array}{lll}3 & 7 & 2 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}4 \\ -10 \\ 15\end{array}\right]$

$$
\begin{aligned}
& 5 x_{3}=15 \Rightarrow x_{3}=3 \\
& 5 x_{2}=-10 \Rightarrow x_{2}=-2 \\
& 3 x_{1}+7 x_{2}+2 x_{3}=4 \Rightarrow 3 x_{1}+(-14)+6=4 \Rightarrow 3 x_{1}=12 \Rightarrow x_{1}=4 \\
& \therefore \vec{x}=\left[\begin{array}{c}
4 \\
-2 \\
3
\end{array}\right]
\end{aligned}
$$

3. (2 marks) Let S be the set of vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ in \mathbb{R}^{2} satisfying the property $y= \pm x$. Either prove that S forms a subspace of \mathbb{R}^{2} or give a counterexample to show that it does not.
$\overrightarrow{0}$ is in S and S is closed under scalar multiplication. However, S is not a subspace of \mathbb{R}^{2} since it's not closed under addition. Consider $\vec{u}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\vec{v}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$. Both \vec{u} and \vec{v} are in S, but $\vec{u}+\vec{v}=\left[\begin{array}{l}2 \\ 0\end{array}\right]$ is not in S Since $0 \neq \pm 2$.
4. (3 marks) Let $A=\left[\begin{array}{rrr}1 & 2 & 2 \\ 3 & 7 & 9 \\ -2 & -5 & -7\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{r}-4 \\ 3 \\ -1\end{array}\right]$. Determine whether or not \mathbf{v} belongs to the following subspaces of \mathbb{R}^{3}.
(a) $\operatorname{col}(A)$
(b) $\operatorname{null}(A)$
a) Solve $C_{1}\left[\begin{array}{c}1 \\ 3 \\ -2\end{array}\right]+C_{2}\left[\begin{array}{c}2 \\ 7 \\ -5\end{array}\right]+C_{3}\left[\begin{array}{c}2 \\ 9 \\ -7\end{array}\right]=\left[\begin{array}{c}-4 \\ 3 \\ -1\end{array}\right]$.

$$
\left[\begin{array}{ccc|c}
1 & 2 & 2 & -4 \\
3 & 7 & 9 & 3 \\
-2 & -5 & -7 & -1
\end{array}\right] \rightarrow \begin{aligned}
& R_{2}-3 R_{1} \\
& R_{3}+2 R_{1}
\end{aligned}\left[\begin{array}{ccc|c}
1 & 2 & 2 & -4 \\
0 & 1 & 3 & 15 \\
0 & -1 & -3 & -9
\end{array}\right]
$$

$$
\rightarrow R_{3}+R_{2}\left[\begin{array}{ccc|c}
1 & 2 & 2 & -4 \\
0 & 1 & 3 & 15 \\
0 & 0 & 0 & 6
\end{array}\right]
$$

\leftarrow system is inconsistent (no solution)
$\therefore \vec{V}$ is not in $\operatorname{col}(A)$.
b) $A \vec{v}=\left[\begin{array}{ccc}1 & 2 & 2 \\ 3 & 7 & 9 \\ -2 & -5 & -7\end{array}\right]\left[\begin{array}{r}-4 \\ 3 \\ -1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]=\overrightarrow{0}$

$$
\therefore \vec{V} \text { is in } \operatorname{null}(A) \text {. }
$$

5. (5 marks) Suppose

$$
\begin{gathered}
A=\left[\begin{array}{rrrr}
1 & -3 & 2 & 1 \\
-2 & 6 & -5 & 1 \\
4 & -12 & 7 & 7
\end{array}\right] \xrightarrow{\text { PREF }}\left[\begin{array}{rrrr}
1 & -3 & 0 & 7 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 0
\end{array}\right] . \\
A^{T}=\left[\begin{array}{rrr}
1 & -2 & 4 \\
-3 & 6 & -12 \\
2 & -5 & 7 \\
1 & 1 & 7
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{lll}
1 & 0 & 6 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

(a) Find a basis for the column space of A consisting of columns of A.
(b) Express each column vector of A that is not in your basis from part (a) as a linear combination of basis vectors.
(c) Find a basis for the row space of A consisting of rows of A.
(d) Find a basis for the null space of A.
(e) Find $\operatorname{rank}(A)$ and nullity (A).
a) $\left\{\left[\begin{array}{c}1 \\ -2 \\ 4\end{array}\right],\left[\begin{array}{c}2 \\ -5 \\ 7\end{array}\right]\right\}$
b) $\left[\begin{array}{c}-3 \\ 6 \\ -12\end{array}\right]=-3\left[\begin{array}{c}1 \\ -2 \\ 4\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 1 \\ 7\end{array}\right]=7\left[\begin{array}{c}1 \\ -2 \\ 4\end{array}\right]-3\left[\begin{array}{c}2 \\ -5 \\ 7\end{array}\right]$
c) $\left\{\left[\begin{array}{llll}1 & -3 & 2 & 1\end{array}\right],\left[\begin{array}{llll}-2 & 6 & -5 & 1\end{array}\right]\right\}$
d) Solving $A \vec{x}=\overrightarrow{0}$ using RREF of A gives

$$
\begin{aligned}
& x_{2}=s, x_{4}=t, x_{1}=35-7 t, x_{3}=3 t \\
& \text { i.e. } \vec{x}=\left[\begin{array}{c}
3 s-7 t \\
s \\
3 t \\
t
\end{array}\right]=s\left[\begin{array}{l}
3 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-7 \\
0 \\
3 \\
1
\end{array}\right] \quad \therefore \text { basis is }\left\{\left[\begin{array}{l}
3 \\
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{c}
-7 \\
0 \\
3 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

e) $\operatorname{rank}(A)=2$ and nullity $(A)=2$
6. (3 marks) Let $\mathbf{v}=\left[\begin{array}{r}1 \\ -2\end{array}\right]$ and suppose T is a linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} satisfying $T(\mathbf{i})=\left[\begin{array}{l}3 \\ 4\end{array}\right]$ and $T(\mathbf{j})=\left[\begin{array}{l}4 \\ 5\end{array}\right]$.
(a) Find $T(\mathbf{v})$.
(b) Find $T^{-1}(\mathbf{v})$.
a) Standard matrix for T is $A=\left[\begin{array}{ll}3 & 4 \\ 4 & 5\end{array}\right]$.

$$
\begin{gathered}
\therefore T(\vec{v})=A \vec{v}=\left[\begin{array}{ll}
3 & 4 \\
4 & 5
\end{array}\right]\left[\begin{array}{c}
1 \\
-2
\end{array}\right]=\left[\begin{array}{l}
-5 \\
-6
\end{array}\right] . \\
\text { b) } \quad A^{-1}=\frac{1}{-1}\left[\begin{array}{cc}
5 & -4 \\
-4 & 3
\end{array}\right]=\left[\begin{array}{cc}
-5 & 4 \\
4 & -3
\end{array}\right] . \\
\therefore T^{-1}(\vec{v})=A^{-1} \vec{v}=\left[\begin{array}{cc}
-5 & 4 \\
4 & -3
\end{array}\right]\left[\begin{array}{c}
1 \\
-2
\end{array}\right]=\left[\begin{array}{c}
-13 \\
10
\end{array}\right] .
\end{gathered}
$$

7. (3 marks) Let $\mathbf{u}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathbf{v}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$, and $\mathbf{w}=\left[\begin{array}{l}4 \\ 2\end{array}\right]$.
(a) Find the coordinate vector $[\mathbf{w}]_{\mathcal{B}}$ of \mathbf{w} with respect to the basis $\mathcal{B}=\{\mathbf{u}, \mathbf{v}\}$ of \mathbb{R}^{2}.
(b) If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a linear transformation and

$$
T(\mathbf{u})=\left[\begin{array}{r}
1 \\
-2 \\
3
\end{array}\right] \quad \text { and } \quad T(\mathbf{v})=\left[\begin{array}{r}
4 \\
8 \\
-1
\end{array}\right]
$$

then find $T(\mathbf{w})$.

$$
\begin{aligned}
& \text { a) }\left[\begin{array}{ll|l}
1 & 3 & 4 \\
2 & 4 & 2
\end{array}\right] \rightarrow R_{2}-2 R_{1}\left[\begin{array}{cc|c}
1 & 3 & 4 \\
0 & -2 & -6
\end{array}\right] \rightarrow-\frac{1}{2} R_{2}\left[\begin{array}{ll|l}
1 & 3 & 4 \\
0 & 1 & 3
\end{array}\right] \\
& \rightarrow R_{1}-3 R_{2}\left[\begin{array}{ll|c}
1 & 0 & -5 \\
0 & 1 & 3
\end{array}\right] \therefore \vec{w}=-5 \vec{u}+3 \vec{v} \text { and }[\vec{\omega}]_{B}=\left[\begin{array}{c}
-5 \\
3
\end{array}\right] . \\
& \text { b) } T(\vec{w})
\end{aligned}=T(-5 \vec{u}+3 \vec{v})=-5 T(\vec{u})+3 T(\vec{v}) .
$$

8. (3 marks) Consider the linear transformation T from \mathbb{R}^{2} to \mathbb{R}^{2} that reflects a vector about the line $y=-x$, then rotates it clockwise by 30°, and then finally projects it onto the y-axis.
(a) Find the standard matrix of T.
(b) Use your answer from part (a) to find $T(\mathbf{v})$, where $\mathbf{v}=\left[\begin{array}{r}-2 \\ 4\end{array}\right]$. Give an exact answer.
a) Reflection S about $y=-x$.

Rotation R- $30^{\circ} \quad B=\left[\begin{array}{ll}\cos \left(-30^{\circ}\right) & -\sin \left(-30^{\circ}\right. \\ \sin \left(-30^{\circ}\right) & \cos \left(-30^{\circ}\right)\end{array}\right]=\left[\begin{array}{cc}\sqrt{3} / 2 & 1 / 2 \\ -1 / 2 & \sqrt{3} / 2\end{array}\right]$
Projection P onto y-axis.

$$
C=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& \text { Matrix for } T=P \cdot R_{-30^{\circ}} \circ S \text { is } \\
& D=C B A=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\sqrt{3} / 2 & 1 / 2 \\
-1 / 2 & \sqrt{3} / 2
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
-1 / 2 & \sqrt{3} / 2
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right]
\end{aligned}
$$

b) $T(\vec{v})=D \vec{v}=\left[\begin{array}{cc}0 & 0 \\ -\sqrt{3} / 2 & 1 / 2\end{array}\right]\left[\begin{array}{c}-2 \\ 4\end{array}\right]=\left[\begin{array}{c}0 \\ \sqrt{3}+2\end{array}\right]$.

