

Name:

 $^{\rm Mark:} \, \overline{25}$

MATH 251 Assignment 4

1. (3 marks) Find an *LU* factorization of
$$A = \begin{bmatrix} 3 & -7 & -2 \\ -3 & 5 & 1 \\ -6 & -4 & 0 \end{bmatrix}$$
.

2. (3 marks) Solve the following system using the LU method.

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 7 & 2 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \\ 1 \end{bmatrix}$$

3. (2 marks) Let S be the set of vectors $\begin{bmatrix} x \\ y \end{bmatrix}$ in \mathbb{R}^2 satisfying the property $y = \pm x$. Either prove that S forms a subspace of \mathbb{R}^2 or give a counterexample to show that it does not.

4. (3 marks) Let
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 3 & 7 & 9 \\ -2 & -5 & -7 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} -4 \\ 3 \\ -1 \end{bmatrix}$. Determine whether or not \mathbf{v} belongs to the following subspaces of \mathbb{R}^3

the following subspaces of \mathbb{R}^3 .

- (a) $\operatorname{col}(A)$
- (b) $\operatorname{null}(A)$

5. (5 marks) Suppose

$$A = \begin{bmatrix} 1 & -3 & 2 & 1 \\ -2 & 6 & -5 & 1 \\ 4 & -12 & 7 & 7 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & -3 & 0 & 7 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$A^{T} = \begin{bmatrix} 1 & -2 & 4 \\ -3 & 6 & -12 \\ 2 & -5 & 7 \\ 1 & 1 & 7 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & 0 & 6 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- (a) Find a basis for the column space of A consisting of columns of A.
- (b) Express each column vector of A that is not in your basis from part (a) as a linear combination of basis vectors.
- (c) Find a basis for the row space of A consisting of rows of A.
- (d) Find a basis for the null space of A.
- (e) Find rank(A) and nullity(A).

6. (3 marks) Let v = ¹ ₋₂ and suppose T is a linear transformation from R² to R² satisfying T(i) = ³ ₄ and T(j) = ⁴ ₅.
(a) Find T(v).
(b) Find T⁻¹(v).

- 7. (3 marks) Let $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$.
 - (a) Find the coordinate vector $[\mathbf{w}]_{\mathcal{B}}$ of \mathbf{w} with respect to the basis $\mathcal{B} = \{\mathbf{u}, \mathbf{v}\}$ of \mathbb{R}^2 .
 - (b) If $T: \mathbb{R}^2 \to \mathbb{R}^3$ is a linear transformation and

$$T(\mathbf{u}) = \begin{bmatrix} 1\\ -2\\ 3 \end{bmatrix}$$
 and $T(\mathbf{v}) = \begin{bmatrix} 4\\ 8\\ -1 \end{bmatrix}$,

then find $T(\mathbf{w})$.

- 8. (3 marks) Consider the linear transformation T from \mathbb{R}^2 to \mathbb{R}^2 that reflects a vector about the line y = -x, then rotates it clockwise by 30°, and then finally projects it onto the y-axis.
 - (a) Find the standard matrix of T.
 - (b) Use your answer from part (a) to find $T(\mathbf{v})$, where $\mathbf{v} = \begin{bmatrix} -2\\ 4 \end{bmatrix}$. Give an exact answer.