Name: \qquad

Mark: $\overline{25}$

MATH 251
 Assignment 4

1. (3 marks) Find an $L U$ factorization of $A=\left[\begin{array}{rrr}3 & -7 & -2 \\ -3 & 5 & 1 \\ -6 & -4 & 0\end{array}\right]$.
2. (3 marks) Solve the following system using the $L U$ method.

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
3 & 7 & 2 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
4 \\
-2 \\
1
\end{array}\right]
$$

3. (2 marks) Let S be the set of vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ in \mathbb{R}^{2} satisfying the property $y= \pm x$. Either prove that S forms a subspace of \mathbb{R}^{2} or give a counterexample to show that it does not.
4. (3 marks) Let $A=\left[\begin{array}{rrr}1 & 2 & 2 \\ 3 & 7 & 9 \\ -2 & -5 & -7\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{r}-4 \\ 3 \\ -1\end{array}\right]$. Determine whether or not \mathbf{v} belongs to the following subspaces of \mathbb{R}^{3}.
(a) $\operatorname{col}(A)$
(b) $\operatorname{null}(A)$
5. (5 marks) Suppose

$$
\left.\begin{array}{c}
A=\left[\begin{array}{rrrr}
1 & -3 & 2 & 1 \\
-2 & 6 & -5 & 1 \\
4 & -12 & 7 & 7
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{rrr}
1 & -3 & 0 \\
0 & 0 & 1 \\
-3 \\
0 & 0 & 0
\end{array}\right] 0
\end{array}\right]
$$

(a) Find a basis for the column space of A consisting of columns of A.
(b) Express each column vector of A that is not in your basis from part (a) as a linear combination of basis vectors.
(c) Find a basis for the row space of A consisting of rows of A.
(d) Find a basis for the null space of A.
(e) Find $\operatorname{rank}(A)$ and nullity (A).
6. (3 marks) Let $\mathbf{v}=\left[\begin{array}{r}1 \\ -2\end{array}\right]$ and suppose T is a linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} satisfying $T(\mathbf{i})=\left[\begin{array}{l}3 \\ 4\end{array}\right]$ and $T(\mathbf{j})=\left[\begin{array}{l}4 \\ 5\end{array}\right]$.
(a) Find $T(\mathbf{v})$.
(b) Find $T^{-1}(\mathbf{v})$.
7. (3 marks) Let $\mathbf{u}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathbf{v}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$, and $\mathbf{w}=\left[\begin{array}{l}4 \\ 2\end{array}\right]$.
(a) Find the coordinate vector $[\mathbf{w}]_{\mathcal{B}}$ of \mathbf{w} with respect to the basis $\mathcal{B}=\{\mathbf{u}, \mathbf{v}\}$ of \mathbb{R}^{2}.
(b) If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a linear transformation and

$$
T(\mathbf{u})=\left[\begin{array}{r}
1 \\
-2 \\
3
\end{array}\right] \quad \text { and } \quad T(\mathbf{v})=\left[\begin{array}{r}
4 \\
8 \\
-1
\end{array}\right],
$$

then find $T(\mathbf{w})$.
8. (3 marks) Consider the linear transformation T from \mathbb{R}^{2} to \mathbb{R}^{2} that reflects a vector about the line $y=-x$, then rotates it clockwise by 30°, and then finally projects it onto the y-axis.
(a) Find the standard matrix of T.
(b) Use your answer from part (a) to find $T(\mathbf{v})$, where $\mathbf{v}=\left[\begin{array}{r}-2 \\ 4\end{array}\right]$. Give an exact answer.

