Name: \qquad

Mark:

25

MATH 251
 Assignment 3

1. (2 marks) Suppose A is a 2×4 matrix and B is a 3×2 matrix. Find the size of matrix C in each equation, assuming the matrix operations are well-defined.
(a) $A C B=I_{2}$
(b) $4 A^{T}-3 C=O$
2. (2 marks) Let $A=\left[\begin{array}{ll}1 & a \\ 2 & 1\end{array}\right]$. If $A^{2}=2 A$, then find a.
3. (3 marks) Evaluate (if possible) $B^{T} B+4 A^{2}-3 I_{2}$, where $A=\left[\begin{array}{rr}7 & 1 \\ -5 & -4\end{array}\right]$ and $B=\left[\begin{array}{rr}6 & 0 \\ 1 & 4 \\ 9 & -1\end{array}\right]$.
4. (3 marks) Write D as a linear combination of A, B, and C (if possible), where

$$
A=\left[\begin{array}{rr}
1 & -1 \\
-1 & 3
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right], \quad C=\left[\begin{array}{ll}
2 & 2 \\
1 & 1
\end{array}\right], \quad \text { and } \quad D=\left[\begin{array}{rr}
-4 & -8 \\
-3 & 9
\end{array}\right] .
$$

5. (3 marks) Determine whether $A B$ is in $\operatorname{span}(A, B)$, where $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ and $B=\left[\begin{array}{rr}-1 & 4 \\ 0 & 3\end{array}\right]$.
6. (3 marks) If $A=\left[\begin{array}{lll}2 & -2 & 3 \\ 1 & -1 & 2\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 2 & 5\end{array}\right]$, then solve the following equation for X.

$$
X A A^{T}+B-3 I_{2}=O
$$

7. (2 marks) Let $A=\left[\begin{array}{rrr}1 & 4 & 0 \\ -2 & 2 & -3 \\ 5 & 1 & 7\end{array}\right], B=\left[\begin{array}{rrr}5 & 1 & 7 \\ -2 & 2 & -3 \\ 1 & 4 & 0\end{array}\right]$ and $C=\left[\begin{array}{rrr}1 & 4 & 0 \\ 0 & 10 & -3 \\ 5 & 1 & 7\end{array}\right]$.
(a) Find an elementary matrix E satisfying the equation $E A=B$.
(b) Find an elementary matrix E satisfying the equation $E A=C$.
8. (1 mark) Find the inverse of $A=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]$.
9. (3 marks) Let $A=\left[\begin{array}{rr}1 & 0 \\ -4 & 3\end{array}\right]$. Write A^{-1} and A each as a product of two elementary matrices.
10. (3 marks) Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}4 \\ 7 \\ 5\end{array}\right]$.
(a) Find A^{-1} using the Gauss-Jordan method for computing the inverse.
(b) Use A^{-1} to solve the system $A \mathbf{x}=\mathbf{b}$.
