MATH 251
Assignment 1

1. (4 marks) Consider two points A and B in \mathbb{R}^{3}. Suppose $A=(3,0,2)$ and $\overrightarrow{A B}=\left[\begin{array}{r}2 \\ -3 \\ 6\end{array}\right]$.
(a) Find the coordinates of point B.
(b) Find two distinct unit vectors that are parallel to $\overrightarrow{A B}$.
(c) Find parametric equations for the line passing through points A and B.
(d) At what point does the line from part (c) intersect the $x y$-plane?
a) $\overrightarrow{A B}=\vec{B}-\vec{A} \Rightarrow \vec{B}=\overrightarrow{A B}+\vec{A}=\left[\begin{array}{c}2 \\ -3 \\ 6\end{array}\right]+\left[\begin{array}{l}3 \\ 0 \\ 2\end{array}\right]=\left[\begin{array}{c}5 \\ -3 \\ 8\end{array}\right] \quad \therefore B=(5,-3,8)$
b) $\|\overrightarrow{A B}\|=\sqrt{2^{2}+(-3)^{2}+6^{2}}=\sqrt{4+9+36}=\sqrt{49}=7$

$$
\therefore \vec{U}= \pm \frac{1}{\|\overrightarrow{A B}\|} \overrightarrow{A B}= \pm \frac{1}{7}\left[\begin{array}{c}
2 \\
-3 \\
6
\end{array}\right]
$$

c) $\vec{x}=\vec{A}+t \overrightarrow{A B}=\left[\begin{array}{l}3 \\ 0 \\ 2\end{array}\right]+t\left[\begin{array}{c}2 \\ -3 \\ 6\end{array}\right] \Rightarrow\left\{\begin{array}{l}x=3+2 t \\ y=-3 t \\ z=2+6 t\end{array} \quad\right.$ (Answer not unique.)
d) $z=0 \Rightarrow 2+6 t=0 \Rightarrow t=-\frac{1}{3} \quad \therefore x=3+2\left(-\frac{1}{3}\right)=\frac{7}{3}$ and $y=-3\left(-\frac{1}{3}\right)=1$

$$
\therefore \text { point is }\left(\frac{7}{3}, 1,0\right)
$$

2. (7 marks) Consider the three points

$$
A=(2,0,-5), \quad B=(8,2,-9), \quad C=(7,9,-7)
$$

(a) Find the area of triangle $\triangle A B C$. Give an exact, simplified answer.
(b) Find the angle $0^{\circ} \leq \theta \leq 180^{\circ}$ between $\overrightarrow{A B}$ and $\overrightarrow{A C}$. Round your answer to two decimal places.
(c) Determine whether or not $\triangle A B C$ is a right triangle.
(d) Find the equation, in general form, of the plane passing through the points A, B, and C.
a) $\overrightarrow{A B}=\left[\begin{array}{c}8 \\ 2 \\ -9\end{array}\right]-\left[\begin{array}{c}2 \\ 0 \\ -5\end{array}\right]=\left[\begin{array}{c}6 \\ 2 \\ -4\end{array}\right]$ and $\overrightarrow{A C}=\left[\begin{array}{c}7 \\ 9 \\ -7\end{array}\right]-\left[\begin{array}{c}2 \\ 0 \\ -5\end{array}\right]=\left[\begin{array}{c}5 \\ 9 \\ -2\end{array}\right]$

$$
\begin{aligned}
\overrightarrow{A B} \times \overrightarrow{A C} & =\left\lvert\, \begin{array}{ccc|cc}
\hat{\imath} & \hat{\jmath} & \hat{k} & \hat{\imath} & \hat{\jmath} \\
6 & 2 & -4 & 6 & 2 \\
5 & 9 & -2 & 5 & 9
\end{array}\right. \\
=32 \hat{\imath}-8 \hat{\jmath}+44 \hat{\jmath} \quad \therefore \text { Area } & =\frac{1}{2}\|\overrightarrow{\jmath B} \times \overrightarrow{A C}\|=\frac{1}{2} \sqrt{32^{2}+(-8)^{2}+44^{2}} \\
& =\frac{1}{2} \sqrt{3024}=\frac{1}{2}(12 \sqrt{21})=6 \sqrt{21}
\end{aligned}
$$

b).

$$
\begin{aligned}
& \|\overrightarrow{A B}\|=\sqrt{6^{2}+2^{2}+(-4)^{2}}=\sqrt{56}=2 \sqrt{14} \\
& \|\overrightarrow{A C}\|=\sqrt{5^{2}+9^{2}+(-2)^{2}}=\sqrt{110} \\
& \overrightarrow{A B} \cdot \overrightarrow{A C}=30+18+8=56 \\
& \cos \theta=\frac{\overrightarrow{A B} \cdot \overrightarrow{A C}}{\|\overrightarrow{A B}\|\|A C\|}=\frac{56}{2 \sqrt{14} \sqrt{110}}=\frac{14}{\sqrt{385}} \Rightarrow \theta=\cos ^{-1} \frac{14}{\sqrt{385}} \approx 44.48^{\circ} \\
& \text { c) } \overrightarrow{B C}=\left[\begin{array}{c}
7 \\
9 \\
-7
\end{array}\right]-\left[\begin{array}{c}
8 \\
2 \\
-9
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right] \quad \overrightarrow{A B} \cdot \overrightarrow{B C}=-6+14-8=0 \quad \therefore \overrightarrow{A B} \perp \cdot \overrightarrow{B C}
\end{aligned}
$$

and $\angle B=90^{\circ}$ and so $\triangle A B C$ is a right triangle.
d)

$$
\left.\begin{array}{rl}
\vec{n}=\overrightarrow{A B} \times \overrightarrow{A C}=\left[\begin{array}{c}
32 \\
-8 \\
44
\end{array}\right] \quad \vec{n} \cdot \vec{x} & =\vec{n} \cdot \vec{A} \\
32 x-8 y+44 z & =32(2)-8(0)+44(-5) \\
32 x-8 y+44 z & =-156 \\
& \text { or } \quad 8 x-2 y+11 z
\end{array}\right)=-39
$$

3. (3 marks) Using projections, find the distance between the parallel planes $x+y-2 z=2$ and $x+y-2 z=4$. Given an exact, simplified answer.
Let A be a point on $1^{s t}$ plane, e.g. $A=(0,0,-1)$.
Let B be a point on $2^{\text {nd }}$ plane, egg $B=(0,0,-2)$
Then $\overrightarrow{A B}=\left[\begin{array}{c}0 \\ 0 \\ -1\end{array}\right]$. Also $\vec{n}=\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]$ is a

normal vector to both planes.

$$
\text { Let } \vec{p}=\operatorname{proj}_{\vec{n}}(\overrightarrow{A B})=\left(\frac{\vec{n} \cdot \overrightarrow{A B}}{\vec{n} \cdot \vec{n}}\right) \stackrel{\rightharpoonup}{n}=\frac{2}{6} \vec{n}=\frac{1}{3} \vec{n}
$$

Then distance $=\|\vec{p}\|=\left\|\frac{1}{3} \vec{n}\right\|=\frac{1}{3} \sqrt{1^{2}+1^{2}+(-2)^{2}}=\frac{\sqrt{6}}{3}$.
4. (3 marks) Let $\mathbf{u}=[-4,0,3]$ and $\mathbf{v}=[2,5,1]$. Find vectors \mathbf{p} and \mathbf{q} so that $\mathbf{v}=\mathbf{p}+\mathbf{q}, \mathbf{p}$ is parallel to \mathbf{u}, and \mathbf{q} is orthogonal to \mathbf{u}. [Hint: Use projections to find one of the vectors.]

$$
\begin{aligned}
\vec{p} & =\operatorname{proj}_{\vec{u}}(\vec{v})=\left(\frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}}\right) \vec{u} \\
& =\frac{-5}{25} \vec{u}=-\frac{1}{5}[-4,0,3]=\left[\frac{4}{5}, 0, \frac{-3}{5}\right] \\
\vec{q} & =\vec{v}-\vec{p}=[2,5,1]-\left[\frac{4}{5}, 0,-\frac{3}{5}\right]=\left[\frac{6}{5}, 5, \frac{8}{5}\right] .
\end{aligned}
$$

5. (3 marks) Find an equation, in parametric form, of the line passing through the point $P=(1,2,-1)$ and orthogonal to the plane defined by

$$
\left\{\begin{array}{l}
x=6+2 s-t \\
y=1-3 s+5 t \\
z=-7+s-t
\end{array} \Rightarrow \vec{x}=\left[\begin{array}{r}
6 \\
1 \\
-7
\end{array}\right]+5\left[\begin{array}{r}
2 \\
-3 \\
1
\end{array}\right]+t\left[\begin{array}{r}
-1 \\
5 \\
-1
\end{array}\right]\right.
$$

$$
\begin{aligned}
\vec{n} & =\left[\begin{array}{r}
2 \\
-3 \\
1
\end{array}\right] \times\left[\begin{array}{r}
-1 \\
5 \\
-1
\end{array}\right]=\left\{\begin{array}{ccc|cc}
\hat{\imath} & \hat{\jmath} & \hat{k} & \hat{\imath} & \hat{\jmath} \\
2 & -3 & 1 & 2 & -3 \\
-1 & 5 & -1 & -1 & 5
\end{array}\right. \\
& =3 \hat{\imath}-\hat{\jmath}+10 \hat{k}-3 \hat{k}-5 \hat{\imath}+2 \hat{\jmath}=-2 \hat{\imath}+\hat{\jmath}+7 \hat{k}
\end{aligned}
$$

direction vectors for plane

This normal vector is orthogonal to the plane and \therefore a direction vector for the line.

$$
\therefore \vec{x}=\vec{p}+t \vec{d}=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]+t\left[\begin{array}{c}
-2 \\
1 \\
7
\end{array}\right]
$$

$$
\text { In parametric form, }\left\{\begin{array}{l}
x=1-2 t \\
y=2+t \\
z=-1+7 t
\end{array} \quad\right. \text { (Answer not unique.) }
$$

6. (3 marks) Find the vector form of the equation of the plane $3 x-4 y+2 z=12$.

Three points on the plane are $A=(4,0,0), B=(0,-3,0)$ and $C=(0,0,6)$. $\therefore \overrightarrow{A B}=\left[\begin{array}{c}-4 \\ -3 \\ 0\end{array}\right]$ and $\overrightarrow{A C}=\left[\begin{array}{c}-4 \\ 0 \\ 6\end{array}\right]$ are nonparallel direction vectors for the plane. Scaling to simplify (optronal) gives us $\vec{u}=\left[\begin{array}{l}4 \\ 3 \\ 0\end{array}\right]$ and $\vec{v}=\left[\begin{array}{c}-2 \\ 3 \\ 3\end{array}\right]$. Using point A for $\vec{p}=\left[\begin{array}{l}4 \\ 0 \\ 0\end{array}\right]$, we get the vector form $\vec{x}=\vec{p}+s \vec{k}+t \vec{v}$ given by

$$
\vec{x}=\left[\begin{array}{l}
4 \\
0 \\
0
\end{array}\right]+S\left[\begin{array}{l}
4 \\
3 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-2 \\
0 \\
3
\end{array}\right] \quad \text { (Answer not unique.) }
$$

7. (2 marks) Find the values) of k such that the vector

$$
\mathbf{v}=\left[\begin{array}{c}
-1 \\
k \\
2
\end{array}\right]
$$

is orthogonal to the plane $2 x+3 y-4 z=0$.
\vec{V} must be parallel to (i.e. a scalar multiple of) the normal vector $\vec{n}=\left[\begin{array}{c}2 \\ 3 \\ -4\end{array}\right]$ to the plane:

$$
\begin{aligned}
& \vec{v}=c \vec{n} \Rightarrow\left[\begin{array}{c}
-1 \\
k \\
2
\end{array}\right]=c\left[\begin{array}{c}
2 \\
3 \\
-4
\end{array}\right]=\left[\begin{array}{c}
2 c \\
3 c \\
-4 c
\end{array}\right] \\
& \therefore \quad-1=2 c \Rightarrow c=-1 / 2 \text { and similarly } 2=-4 c \Rightarrow c=-1 / 2 \\
& \therefore \quad k=3 c=3\left(-\frac{1}{2}\right)=-\frac{3}{2}
\end{aligned}
$$

OR Find any vector parallel to the plane with a nonzero y-component. eg since $A=(0,0,0)$ and $B=(3,-2,0)$ are in the plane then $\overrightarrow{A B}=\left[\begin{array}{c}3 \\ -2 \\ 0\end{array}\right]$ is such a parallel vector.
Since \vec{V} must be orthogonal to $\overrightarrow{A B}$, then

$$
\vec{V} \cdot \overrightarrow{A B}=0 \Rightarrow(-3)-2 k+0=0 \Rightarrow k=-\frac{3}{2} .
$$

