Method of Undetermined Coefficients **Problem.** Find a particular solution y_p of the constant coefficients linear equation $$a_n y^{(n)} + \dots + a_2 y'' + a_1 y' + a_0 y = g(x).$$ We assume that $$g(x) = [polynomial] \times [exponential] \times [sinusoid].$$ More precisely, we assume that $$g(x) = p(x) e^{\alpha x} (a \cos(\omega x) + b \sin(\omega x)),$$ where $p(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_m x^m$. ## Basic Guess. • If $\omega = 0$, so that $g(x) = p(x) e^{\alpha x}$, we look for y_p in the form $$y_p = (A_0 + A_1 x + A_2 x^2 + \dots + A_m x^m) e^{\alpha x}$$ for the undetermined coefficients $A_0, A_1, A_2, \ldots, A_m$. • If $\omega \neq 0$, we look for y_p in the form $$y_p = (A_0 + A_1 x + A_2 x^2 + \dots + A_m x^m) e^{\alpha x} \cos(\omega x) + (B_0 + B_1 x + B_2 x^2 + \dots + B_m x^m) e^{\alpha x} \sin(\omega x)$$ for the undetermined coefficients $A_0, A_1, A_2, \ldots, A_m$ and $B_0, B_1, B_2, \ldots, B_m$. We always choose m in both cases above to match the degree of the polynomial p(x). If g(x) does not include an exponential term, simply set $\alpha = 0$. #### Examples. | g(x) | Form of y_p | |---------------------------------|---| | 5 | A | | $3x^2$ | $Ax^2 + Bx + C$ | | $5x^3 + 2x - 3$ | $Ax^3 + Bx^2 + Cx + D$ | | $3e^{4x}$ | Ae^{4x} | | $(5x+3)e^{2x}$ | $(Ax+B)e^{2x}$ | | x^2e^{6x} | $(Ax^2 + Bx + C)e^{6x}$ | | $5\cos(2x)$ | $A\cos(2x) + B\sin(2x)$ | | $e^{-2x}(\cos(3x) + 2\sin(3x))$ | $Ae^{-2x}\cos(3x) + Be^{-2x}\sin(3x)$ | | $6x^2\sin(5x)$ | $(Ax^2 + Bx + C)\cos(5x) + (Dx^2 + Ex + F)\sin(5x)$ | | $xe^{3x}\cos(2x)$ | $(Ax + B)e^{3x}\cos(2x) + (Cx + D)e^{3x}\sin(2x)$ | If $g(x) = g_1(x) + g_2(x) + \cdots + g_k(x)$, we apply the procedure separately to each $g_i(x)$ to produce a particular solution $$y_p = y_{p_1} + y_{p_2} + \dots + y_{p_k}.$$ ## Example. If $$g(x) = x^2 + 4xe^{3x} + 5\cos(2x),$$ then the basic form of y_p is $$y_p = \underbrace{Ax^2 + Bx + C}_{y_{p_1}} + \underbrace{(Dx + E)e^{3x}}_{y_{p_2}} + \underbrace{F\cos(2x) + G\sin(2x)}_{y_{p_3}}.$$ "Bad Case". If any of the y_{p_i} contains terms that duplicate terms in the homogeneous solution y_c , then that y_{p_i} must be multiplied by x^n , where n is the smallest positive integer that eliminates the duplication. #### **Example 1**. Consider the equation $$y'' - 6y' + 8y = 3e^{2x}.$$ Since the roots of $m^2 - 6m + 8 = 0$ are m = 2 and m = 4, then $y_c = c_1 e^{2x} + c_2 e^{4x}$. Since $g(x) = 3e^{2x}$, the basic form of y_p is $y_p = Ae^{2x}$. Since Ae^{2x} duplicates the term $c_1 e^{2x}$ in y_c , we have a "bad case". We should multiply Ae^{2x} by x and use use the following $$y_p = Axe^{2x}$$ #### **Example 2**. Consider the equation $$y'' - 6y' + 9y = 5xe^{3x}.$$ The only root of $m^2 - 6m + 9 = 0$ is m = 3. Then, $y_c = c_1 e^{3x} + c_2 x e^{3x}$. Since $g(x) = 5x e^{3x}$, the basic form of y_p is $y_p = (Ax + B)e^{3x}$. Since this y_p duplicates terms in y_c , we have a "bad case". Multiplying by x would still involve terms duplicated in y_c . We should then multiply by x^2 and use the following. $$y_p = (Ax^3 + Bx^2)e^{3x}$$ # **Example 3**. Consider the equation $$y'' + 9y = 5e^x + 2\sin(3x).$$ The roots of $m^2 + 9 = 0$ are $m = \pm 3i$. Then, $y_c = c_1 \cos(3x) + c_2 \sin(3x)$. Since $g(x) = g_1(x) + g_2(x)$, where $g_1(x) = 5e^x$ and $g_2(x) = 2\sin(3x)$, then $y_p = y_{p_1} + y_{p_2}$. The basic forms of y_{p_1} and y_{p_2} are $$y_{p_1} = Ae^x$$ and $y_{p_2} = B\cos(3x) + C\sin(3x)$. Since y_{p_2} duplicates y_c , we have a "bad case". We should multiply y_{p_2} by x and use use the following. $$y_p = Ae^x + Bx\cos(3x) + Cx\sin(3x)$$ Observe that we do not multiply y_{p_1} by x.