
Laplace Transform of a Square Wave

Consider the square wave function

f(t) =

{
1, 2k ≤ t < 2k + 1 for k = 0, 1, 2, . . .

0, 2k + 1 ≤ t < 2k + 2 for k = 0, 1, 2, . . . ,

whose graph is given below. What is its Laplace transform?
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Since f is periodic with period T = 2, we can use the formula L {f(t)} =
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Using a geometric series we can rewrite this as
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Alternatively, if we express f(t) as a series of Heaviside step functions,

f(t) = 1− u(t− 1) + u(t− 2)− u(t− 3) + u(t− 4)− · · · =
∞∑
n=0

(−1)nu(t− n),

then we get
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