
An Overview of Matrices

1 Matrix Definition

A matrix A is a rectangular array of numbers (or functions), which are called the entries
(or elements) of the matrix. If A has m rows and n columns, it is said to have size m× n
(pronounced “m by n”).

A double set of subscripts is used to refer to the entries. The entry in row i and column j
of a matrix A is denoted aij. In other words

A =


a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
...

. . .
...

am1 am2 am3 · · · amn

 .

2 Square Matrix

An m × n matrix is square if m = n. The entries a11, a22, . . . , ann of a square matrix are
called its diagonal entries. For example, matrix

A =

1 2 3
4 5 6
7 8 9


is a square 3× 3 matrix with diagonal entries 1, 5 and 9. The matrix

B =

[
1 2 3
4 5 6

]
is a 2× 3 matrix and is not square.

3 Equality

Two matrices A and B are said to be equal if they have the same size and if corresponding
entries are equal; in other words, aij = bij for all i and j.
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4 Zero and Identity Matrices

A matrix whose entries are all zero is called the zero matrix and is denoted O. For example,

O =

[
0 0 0
0 0 0

]
is the 2× 3 zero matrix. It may be denoted O23 to emphasize its size.

A square matrix whose diagonal entries are all 1 and whose other entries are all 0 is called
the identity matrix and is denoted I. For example,

I =

1 0 0
0 1 0
0 0 1


is the 3× 3 identity matrix. It may be denoted I3 to emphasize its size.

5 Transpose

The transpose of an m× n matrix A is the n×m matrix AT formed by interchanging the
rows and columns of A. For example, if

A =

[
1 2 3
4 5 6

]
,

then

AT =

1 4
2 5
3 6

 .

If A is a square matrix, then it is said to be symmetric if AT = A.

6 Matrix Operations

Arithmetic operations can be performed on matrices, including scalar multiplication, addi-
tion, subtraction and multiplication.

Scalar multiplication of a matrix by a constant (or function) k is performed by multiplying
each entry by k. For example, if

A =

[
1 −2 0
6 2 −7

]
,

and k = −3, then

−3A =

[
−3 6 0
−18 −6 21

]
.
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Addition and subtraction of matrices are done by adding or subtracting their respective
entries. For example,[

1 2 3
4 5 6

]
+

[
1 0 −3
2 7 −1

]
=

[
2 2 0
6 12 5

]
and

[
7 2
0 −3

]
−
[
3 −5
1 1

]
=

[
4 7

−1 −4

]
.

The sum or difference of two matrices is only defined when the matrices have the same size.
Note that A+O = A and O + A = A.

Multiplication of two matrices A and B is only defined when the number of columns of A
is equal to the number or rows of B, such as when A is an m× n matrix and B is an n× p
matrix. The resulting product C = AB will be an m × p matrix. Each entry cij of C is
found by summing the products of the entries of row i in A with the corresponding entries
of column j in B. In other words,

cij =
n∑

k=1

aikbkj.

For example,

AB =

1 2
3 4
5 6

[1 −2
5 −3

]
=

1 · 1 + 2 · 5 1 · (−2) + 2 · (−3)
3 · 1 + 4 · 5 3 · (−2) + 4 · (−3)
5 · 1 + 6 · 5 5 · (−2) + 6 · (−3)

 =

11 −8
23 −18
35 −28

 .

In this example, the product BA is undefined since the sizes are incompatible. Even when
both products AB and BA are defined, in the case where A and B are both n × n square
matrices, in general AB ̸= BA; in other words matrix multiplication is not commutative.

Matrix multiplication is, nevertheless, associative, so that A(BC) = (AB)C and it dis-
tributes over matrix addition, so that A(B + C) = AB + AC and (B + C)A = BA+ CA.

If A is m × n, then AIn = A and ImA = A, where In and Im are the n × n and m × m
identity matrices, respectively.

7 Systems of Equations

A n-dimensional vector x can be represented by an n× 1 matrix having only one column,

x =


x1

x2

x3
...
xn

 .
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A system of equations

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3
...

...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

can be written in the form Ax = b, given by
a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
...

. . .
...

am1 am2 am3 · · · amn




x1

x2

x3
...
xn

 =


b1
b2
b3
...
bm

 .

8 Derivatives and Integrals

If the entries of a matrix A or a vector x are functions of t, then the derivative and integral
of A(t) or x(t) are found by differentiating and integrating, respectively, each entry. For
example, if

A(t) =

[
t 3t2

t3 5

]
and x(t) =

[
sin 2t
cos 2t

]
,

then

A′(t) =
dA

dt
=

[
1 6t
3t2 0

]
, x′(t) =

dx

dt
=

[
2 cos 2t
−2 sin 2t

]
,

∫
A(t) dt =

[
1
2
t2 t3

1
4
t4 5t

]
+ C,

∫
x(t) dt =

[
−1

2
cos 2t

1
2
sin 2t

]
+ c,

where C is an arbitrary 2× 2 constant matrix and c is an arbitrary 2× 1 constant vector.

9 Determinants

Associated with each square matrix is a real number called its determinant, denoted det(A)
or |A|. For a 2× 2 matrix

A =

[
a b
c d

]
,

its determinant is given by the formula

det(A) =

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc.
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Determinants of larger matrices can be calculated recursively (though not necessarily effi-
ciently) using the method of minors. We begin by associating with an n× n matrix

A =


a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
...

. . .
...

an1 an2 an3 · · · ann

 ,

a similarly sized matrix of alternating signs of the form
+ − + − · · ·
− + − + · · ·
+ − + − · · ·
− + − + · · ·
...

...
...

...
. . .

 ,

beginning with + in the upper left. We can then calculate det(A) by expanding along any
single row or column of the matrix. This is done by taking each entry aij in the chosen row
or column, multiplying it by (−1)i+j, which is equivalent to applying the associated sign
from the matrix of alternating signs, and then multiplying it further by the determinant of
the (n−1)× (n−1) matrix formed by deleting the row i and column j of matrix A to which
the entry aij belongs (such a matrix is called a submatrix and its determinant is known as
a minor). These products are then summed together to form det(A).

For example, suppose

A =

 1 −2 −4
2 1 7

−3 2 5

 .

Expanding across the first row gives us

det(A) = 1

∣∣∣∣1 7
2 5

∣∣∣∣− (−2)

∣∣∣∣ 2 7
−3 5

∣∣∣∣+ (−4)

∣∣∣∣ 2 1
−3 2

∣∣∣∣ = 1 · (−9) + 2 · 31− 4 · 7 = 25,

where we used the 2×2 determinant formula to calculate each of the three 2×2 determinants.
Alternatively, expanding across the second column gives us the same answer,

det(A) = −(−2)

∣∣∣∣ 2 7
−3 5

∣∣∣∣+ 1

∣∣∣∣ 1 −4
−3 5

∣∣∣∣− 2

∣∣∣∣1 −4
2 7

∣∣∣∣ = 2 · 31 + 1 · (−7)− 2 · 15 = 25.

If some of the entries of a matrix A are zero, then it is often easier to calculate det(A) by
expanding across a row or column with the most zeros. For example, suppose

A =


3 1 2 5
0 0 2 4
0 6 0 0
0 0 7 8

 .
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Expanding across the first row would lead to four 3× 3 determinants. However, expanding
across the first column (or third row) would only require one 3× 3 determinant calculation
because the others would be multiplied by zero. Using the first column, we get

det(A) = 3

∣∣∣∣∣∣
0 2 4
6 0 0
0 7 8

∣∣∣∣∣∣ = 3(−6)

∣∣∣∣2 4
7 8

∣∣∣∣ = 3(−6)(−12) = 216,

where the 3×3 determinant was found by expanding across the first column (or equivalently
the second row).

10 Cramer’s Rule

Determinants can be used to solve systems of equations of the form Ax = b, assuming A is
square and det(A) ̸= 0. If we let Ai(b) denote matrix A but with column i replaced by b,
then according to Cramer’s rule,

xi =
|Ai(b)|
|A|

for i = 1, 2, . . . , n.

For example, the system of equations

x1 + 2x2 = 5

3x1 + 4x2 = 6

can be written in the form Ax = b given by[
1 2
3 4

][
x1

x2

]
=

[
5
6

]
.

By Cramer’s rule, the solution is

x1 =
|A1(b)|
|A|

=

∣∣∣∣5 2
6 4

∣∣∣∣∣∣∣∣1 2
3 4

∣∣∣∣ =
8

−2
= −4 and x2 =

|A2(b)|
|A|

=

∣∣∣∣1 5
3 6

∣∣∣∣∣∣∣∣1 2
3 4

∣∣∣∣ =
−9

−2
=

9

2
.

11 Inverses

Let A be an n× n matrix. An n× n matrix B is called an inverse of A if AB = BA = I.
A is said to be nonsingular if det(A) ̸= 0 and is said to be singular if det(A) = 0. A has
an inverse if and only if A is nonsingular. If A has an inverse, then it is unique and it is
denoted B = A−1.

The inverse of a 2× 2 matrix

A =

[
a b
c d

]
,

6



where det(A) ̸= 0, is given by the formula

A−1 =
1

|A|

[
d −b

−c a

]
.

There are various algorithms from linear algebra, such as the cofactor method or the
Gauss-Jordan method, for finding inverses of larger matrices.

12 Eigenvalues and Eigenvectors

If A is a square matrix, then the number λ (lambda) is called an eigenvalue of A if there
is a nonzero vector x such that Ax = λx. Such a vector x is called an eigenvector of A
corresponding to λ.

Eigenvalues of A are found by solving the polynomial equation

det(A− λI) = 0,

called the characteristic equation. If A is n × n, then det(A − λI) is a polynomial of
degree n in the variable λ. The eigenvalues of A are the roots of this polynomial. The roots
can be real or complex and there may be repeated roots. There will always be n roots,
counting multiplicities. If all the entries of A are real, then any complex roots will appear
in complex conjugate pairs.

Consider the following example. Let

A =

[
1 2

−1 4

]
.

To find the eigenvalues of A we compute

det(A− λI) = det

([
1 2

−1 4

]
− λ

[
1 0
0 1

])
=

∣∣∣∣1− λ 2
−1 4− λ

∣∣∣∣
= (1− λ)(4− λ) + 2 = λ2 − 5λ+ 4 + 2 = λ2 − 5λ+ 6 = (λ− 2)(λ− 3).

By solving det(A− λI) = 0 we find that A has eigenvalues λ1 = 2 and λ2 = 3.

For a second example, let

A =

−4 0 3
0 2 0

−6 0 5

 .

Here we get

det(A− λI) =

∣∣∣∣∣∣
−4− λ 0 3

0 2− λ 0
−6 0 5− λ

∣∣∣∣∣∣ = (2− λ)

∣∣∣∣−4− λ 3
−6 5− λ

∣∣∣∣
= (2− λ)[(−4− λ)(5− λ) + 18] = −(λ− 2)(λ2 − λ− 20 + 18)

= −(λ− 2)(λ2 − λ− 2) = −(λ− 2)(λ− 2)(λ+ 1) = −(λ− 2)2(λ+ 1).
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In this case λ1 = 2 and λ2 = −1 are eigenvalues, with λ1 = 2 being a repeated root of
multiplicity 2.

For a third example, let

A =

[
3 −2
4 −1

]
.

In this case,

det(A− λI) =

∣∣∣∣3− λ −2
4 −1− λ

∣∣∣∣ = λ2 − 2λ+ 5.

The roots of this quadratic polynomial are the complex eigenvalues λ = 1± 2i.

Once the eigenvalues of a matrix are found, then to find the eigenvectors associated with
each eigenvalue, we need to solve the system (A− λI)x = 0 for nonzero vectors x.

For example, to find an eigenvector associated with the eigenvalue λ1 = 2 of

A =

[
1 2

−1 4

]
,

we compute

A− 2I =

[
−1 2
−1 2

]
,

and solve [
−1 2
−1 2

][
x1

x2

]
=

[
0
0

]
.

This is equivalent to the system of equations

−x1 + 2x2 = 0

−x1 + 2x2 = 0
.

This system of equations has infinitely many solutions satisfying x1 = 2x2. The variable x2

is a “free” variable; it can be chosen to be any value except zero. Note that if x2 were zero,
then x1 would also be zero, leading to x = 0; but eigenvectors must be nonzero. If we let
x2 = 1, then x1 = 2, leading to the eigenvector

x =

[
2
1

]
.

Other choices of x2 would lead to scalar multiples of this vector, which are also eigenvectors
of A associated with λ1 = 2.

In general, to solve (A−λI)x = 0 for x, we would use linear algebra techniques such as row-
reducing the augmented matrix [A−λI|0] using the Gauss-Jordan elimination method,
from which we would obtain the eigenvector solutions.
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