Linear Systems

A first-order system of linear differential equations has the form

$$\frac{dx_1}{dt} = a_{11}(t)x_1 + a_{12}(t)x_2 + a_{13}(t)x_3 + \dots + a_{1n}(t)x_n + f_1(t)$$

$$\frac{dx_2}{dt} = a_{21}(t)x_1 + a_{22}(t)x_2 + a_{23}(t)x_3 + \dots + a_{2n}(t)x_n + f_2(t)$$

$$\frac{dx_3}{dt} = a_{31}(t)x_1 + a_{32}(t)x_2 + a_{33}(t)x_3 + \dots + a_{3n}(t)x_n + f_3(t)$$

$$\vdots \qquad \vdots$$

$$\frac{dx_n}{dt} = a_{n1}(t)x_1 + a_{n2}(t)x_2 + a_{n3}(t)x_3 + \dots + a_{nn}(t)x_n + f_n(t).$$

The system is said to be **homogeneous** if $f_i(t) = 0$ for i = 1, 2, ..., n; otherwise, it is called **nonhomogeneous**.

If we let

$$\mathbf{x} = \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ \vdots \\ x_n(t) \end{bmatrix}, \quad A(t) = \begin{bmatrix} a_{11}(t) & a_{12}(t) & a_{13}(t) & \cdots & a_{1n}(t) \\ a_{21}(t) & a_{22}(t) & a_{23}(t) & \cdots & a_{2n}(t) \\ a_{31}(t) & a_{32}(t) & a_{33}(t) & \cdots & a_{3n}(t) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1}(t) & a_{n2}(t) & a_{n3}(t) & \cdots & a_{nn}(t) \end{bmatrix} \quad \text{and} \quad \mathbf{f} = \begin{bmatrix} f_1(t) \\ f_2(t) \\ f_3(t) \\ \vdots \\ f_n(t) \end{bmatrix},$$

where A(t) is the matrix of coefficients, then the system can be written in the matrix form

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}(t) & a_{12}(t) & a_{13}(t) & \cdots & a_{1n}(t) \\ a_{21}(t) & a_{22}(t) & a_{23}(t) & \cdots & a_{2n}(t) \\ a_{31}(t) & a_{32}(t) & a_{33}(t) & \cdots & a_{3n}(t) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1}(t) & a_{n2}(t) & a_{n3}(t) & \cdots & a_{nn}(t) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} f_1(t) \\ f_2(t) \\ f_3(t) \\ \vdots \\ f_n(t) \end{bmatrix},$$

or simply

$$\mathbf{x}' = A\mathbf{x} + \mathbf{f}$$
 (or $\mathbf{x}' = A\mathbf{x}$ if homogeneous).

We are interested in solving such systems. If subject to an initial condition

$$\mathbf{x}(t_0) = \mathbf{x}_0,$$

then we get an initial-value problem.

Theorem 8.1.1 (Existence and Uniqueness of Solutions of Linear IVPs)

If the entries of A(t) and $\mathbf{f}(t)$ are continuous on an interval I containing t_0 , then there exists a unique solution of the initial-value problem $\mathbf{x}' = A\mathbf{x} + \mathbf{f}$, $\mathbf{x}(t_0) = \mathbf{x}_0$ on I.

Theorem 8.1.2 (Superposition Principle)

If $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots, \mathbf{x}_k$ are solution vectors of the homogeneous system $\mathbf{x}' = A\mathbf{x}$ on an interval I, then the linear combination

$$\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + c_3 \mathbf{x}_3 + \dots + c_k \mathbf{x}_k,$$

where $c_1, c_2, c_3, \ldots, c_k$ are arbitrary constants, is also a solution of the system on I.

Definition 8.1.2 (Linear Dependence/Independence)

A set of solution vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots, \mathbf{x}_k$ of the homogeneous system $\mathbf{x}' = A\mathbf{x}$ is said to be **linearly dependent** (LD) on an interval I if there exist constants $c_1, c_2, c_3, \dots, c_k$, not all zero, such that

$$c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + c_3\mathbf{x}_3 + \dots + c_k\mathbf{x}_k = \mathbf{0},$$

for ever t in I. If the set of vectors is not linearly dependent on I, it is said to be **linearly independent** (LI), in which case $c_1 = c_2 = c_3 = \cdots = c_k = 0$.

Theorem 8.1.3 (Criterion for Linearly Independent Solutions)

Let

$$\mathbf{x}_{1} = \begin{bmatrix} x_{11} \\ x_{21} \\ \vdots \\ x_{n1} \end{bmatrix}, \ \mathbf{x}_{2} = \begin{bmatrix} x_{12} \\ x_{22} \\ \vdots \\ x_{n2} \end{bmatrix}, \ \mathbf{x}_{3} = \begin{bmatrix} x_{13} \\ x_{23} \\ \vdots \\ x_{n3} \end{bmatrix}, \dots, \ \mathbf{x}_{n} = \begin{bmatrix} x_{1n} \\ x_{2n} \\ \vdots \\ x_{nn} \end{bmatrix}$$

be n solution vectors of the homogeneous system $\mathbf{x}' = A\mathbf{x}$ on an interval I. Then the set of solution vectors is linearly independent on I if and only if the **Wronskian** (an $n \times n$ determinant)

$$W(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \dots, \mathbf{x}_{n}) = \begin{vmatrix} x_{11} & x_{12} & x_{13} & \cdots & x_{1n} \\ x_{21} & x_{22} & x_{23} & \cdots & x_{2n} \\ x_{31} & x_{32} & x_{33} & \cdots & x_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & x_{n3} & \cdots & x_{nn} \end{vmatrix} \neq 0,$$

for every t in I.

Definition 8.1.3 (Fundamental Set of Solutions)

Any set $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots, \mathbf{x}_n$ of n linearly independent solution vectors of the homogeneous system $\mathbf{x}' = A\mathbf{x}$ on an interval I is said to be a **fundamental set of solutions** on I.

Theorem 8.1.4 (Existence of a Fundamental Set)

There exists a fundamental set of solutions for the homogeneous system $\mathbf{x}' = A\mathbf{x}$ on an interval I.

Theorem 8.1.5 (General Solution – Homogeneous Systems)

Let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots, \mathbf{x}_n$ be a fundamental set of solutions of the homogeneous system $\mathbf{x}' = A\mathbf{x}$ on an interval I. Then the **general solution** of the system on I is

$$\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + c_3 \mathbf{x}_3 + \dots + c_n \mathbf{x}_n,$$

where $c_1, c_2, c_3, \ldots, c_n$ are arbitrary constants.

Theorem 8.1.6 (General Solution – Nonhomogeneous Systems)

If \mathbf{x}_p is a particular solution of the nonhomogeneous system $\mathbf{x}' = A\mathbf{x} + \mathbf{f}$ on an interval I and \mathbf{x}_h is the general solution of the associated homogeneous system $\mathbf{x}' = A\mathbf{x}$ on I, then the general solution of the nonhomogeneous system $\mathbf{x}' = A\mathbf{x} + \mathbf{f}$ on I is given by

$$\mathbf{x} = \mathbf{x}_h + \mathbf{x}_p.$$

Definition (Fundamental Matrix)

If $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots, \mathbf{x}_n$ is a fundamental set of solutions of the homogeneous system $\mathbf{x}' = A\mathbf{x}$ on an interval I, then the matrix

$$\Phi(t) = \begin{bmatrix} \mathbf{x}_1 | \mathbf{x}_2 | \mathbf{x}_3 | \cdots | \mathbf{x}_n \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & x_{13} & \cdots & x_{1n} \\ x_{21} & x_{22} & x_{23} & \cdots & x_{2n} \\ x_{31} & x_{32} & x_{33} & \cdots & x_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & x_{n3} & \cdots & x_{nn} \end{bmatrix}$$

is called a **fundamental matrix** of the system on *I*. Its determinant is the Wronskian.

Theorem (Variation of Parameters)

If $\Phi(t)$ is a fundamental matrix of the homogeneous system $\mathbf{x}' = A\mathbf{x}$ on an interval I, then a particular solution of the nonhomogeneous system $\mathbf{x}' = A\mathbf{x} + \mathbf{f}$ on I is given by

$$\mathbf{x}_p = \Phi(t) \int \Phi^{-1}(t) \mathbf{f}(t) dt.$$

Moreover, since the general solution of the homogeneous system $\mathbf{x}' = A\mathbf{x}$ can be written $\mathbf{x}_h = \Phi(t)\mathbf{c}$ for an arbitrary $n \times 1$ constant vector \mathbf{c} , then the general solution of the nonhomogeneous system $\mathbf{x}' = A\mathbf{x} + \mathbf{f}$ is given by

$$\mathbf{x} = \mathbf{x}_h + \mathbf{x}_p = \Phi(t)\mathbf{c} + \Phi(t) \int \Phi^{-1}(t)\mathbf{f}(t) dt.$$