
Linear Differential Equations

A general nth-order linear differential equation has the form

an(x)
dny

dxn
+ an−1(x)

dn−1y
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+ · · ·+ a2(x)

d2y

dx2
+ a1(x)

dy

dx
+ a0(x)y = g(x), (1)

where an(x) is not identically zero. If g(x) is identically zero, the linear differential equation is said
to be homogeneous; otherwise it is nonhomogeneous.

A first-order linear differential equation has the form

a1(x)
dy

dx
+ a0(x)y = g(x),

which can be converted into an equation of the form

dy

dx
+ P (x)y = f(x),

by dividing through by a1(x), assuming a1(x) ̸= 0 for all x in some interval I. The general solution
of this equation, which can be found using the integrating factor µ(x) = e

∫
P (x) dx, will involve an

arbitrary constant C, which can be solved for if given an initial condition y(x0) = y0.

The general solution of an nth-order linear differential equation will involve n arbitrary constants
c1, c2, . . . , cn, which can be solved for given n initial conditions at x0:

y(x0) = y0, y′(x0) = y1, y′′(x0) = y2, . . . , y(n−1)(x0) = yn−1. (2)

These initial conditions (2) together with the differential equation (1) define an initial-value prob-
lem (IVP). The following theorem guarantees the existence of a unique solution of the IVP.

Theorem 4.1.1 (Existence and Uniqueness of Solutions of Linear IVPs)
Let an(x), an−1(x), . . . , a2(x), a1(x), a0(x) and g(x) be continuous on an interval I and let an(x) ̸= 0
for all x in I. If x = x0 is any point in I, then there exists a unique solution y(x) of the initial-value
problem (1) and (2) on I.

Note that Theorem 4.1.1 guarantees the existence of a unique solution on the entire interval I.
This is in contrast to Theorem 1.2.1, which guaranteed the existence of a unique solution to the
first-order nonlinear initial-value problem dy/dx = f(x, y) subject to y(x0) = y0, where under
suitable continuity assumptions on f and ∂f/∂y, a unique solution was only guaranteed to exist in
some possibly very tiny interval around x0.

If an(x) ̸= 0 for all x in I, then the differential equation (1) can be simplified by dividing through
by an(x) as was done in the case of the first-order linear differential equation. For example, a
second-order linear IVP would become

y′′ + P (x)y′ +Q(x)y = f(x)

y(x0) = y0, y′(x0) = y1



Theorem 4.1.2 (Superposition Principle – Homogeneous Equations)
Let y1, y2, y3, . . . , yk be solutions of the homogeneous nth-order linear differential equation

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a2(x)

d2y

dx2
+ a1(x)

dy

dx
+ a0(x)y = 0 (3)

on an interval I. Then the linear combination

y = c1y1(x) + c2y2(x) + c3y3(x) + · · ·+ ckyk(x),

where c1, c2, c3, . . . , ck are arbitrary constants, is also a solution on the interval I.

Definition 4.1.1 (Linear Dependence/Independence)
A set of functions f1(x), f2(x), f3(x), . . . , fn(x) is said to be linearly dependent (LD) on an
interval I if there exist constants c1, c2, c3, . . . , cn, not all zero, such that

c1f1(x) + c2f2(x) + c3f3(x) + · · ·+ cnfn(x) = 0 (4)

for every x in the interval I. If the set of functions is not linearly dependent on I, it is said to be
linearly independent (LI), in which case the only constants for which (4) is satisfied for every x
in I are c1 = c2 = c3 = · · · = cn = 0.

Definition 4.1.2 (Wronskian)
Suppose each of the functions f1(x), f2(x), f3(x), . . . , fn(x) possesses at least n−1 derivatives. The
determinant
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where the primes denote derivatives, is called the Wronskian of the functions.

Theorem 4.1.3 (Criterion for Linearly Independent Solutions)
Let y1, y2, . . . , yn be n solutions of the homogeneous nth-order linear differential equation (3) on an
interval I. Then the set of solutions is linearly independent on I if and only if W (y1, y2, . . . , yn) ̸= 0
for every x in I.

Definition 4.1.3 (Fundamental Set of Solutions)
Any set y1, y2, . . . , yn of n linearly independent solutions of the homogeneous nth-order linear dif-
ferential equation (3) on an interval I is said to be a fundamental set of solutions on I.

Theorem 4.1.4 (Existence of a Fundamental Set)
There exists a fundamental set of solutions for the homogeneous nth-order linear differential equa-
tion (3) on an interval I.

Theorem 4.1.5 (General Solution – Homogeneous Equations)
Let y1, y2, . . . , yn be a fundamental set of solutions of the homogeneous nth-order linear differential
equation (3) on an interval I. Then the general solution of the equation on I is

y = c1y1(x) + c2y2(x) + c3y3(x) + · · ·+ cnyn(x),

where c1, c2, c3, . . . , cn are arbitrary constants.


