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There is the need in applied mathematics for general periodic functions. They are required, for example, in

finding solutions to partial differential equations. Instead of using power series, it is more appropriate to expand

periodic functions in terms of sines and cosines. Infinite series of the form

f(x) =
a0

2
+�

n=1

∞

(an cos
n�x
L

+ bn sin
n�x
L

)

are called Fourier series. The functions  are periodic with period . To see this,cos
n�x
L

and sin
n�x
L

T =
2L
n

simply use identities to write out

.cos
n�(x + T)

L
= cos

n�x
L

cos
n�T

L
− sin

n�x
L

sin
n�T

L

This can only be equal to  if . The only solutions to these equations are forcos
n�x
L

cos
n�T

L
= 1 and sin

n�T
L

= 0

.
n�T

L
= 2k� for any integer k

The fundamental period of  is when  so  and hence . The same can be shown for cos
n�x
L

k = 1
n�T

L
= 2� T =

2L
n

.sin
n�x
L

As with power series, the problem is to compute the infinitely many coefficients . With power series,an and bn

we differentiate. With Fourier series, we integrate. Assuming we can integrate term by term, consider
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+ bn sin
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=
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∞
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bn ¶
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sin
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=
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2 ¶−L

L

dx

= a0L

where we have used that the integrals of the sine and cosine functions over multiples of their periods are zero.

So we have the first coefficient

.a0 =
1
L ¶−L

L

f(x)dx

Note that the first term  of the series is just the average value of  on the interval . In order to
a0

2
f(x) [−L, L]

compute the rest of the coefficients, we will need to use the idenities

cos A cos B =
1
2

cos A sin B =
1
2

sin A sin B =
1
2

[cos(A − B) + cos(A + B)]

[sin(A + B) − sin(A − B)]

[cos(A − B) − cos(A + B)]
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to the compute the following integrals:

¶
−L

L

cos
m�x

L
cos

n�x
L

dx =
 

 
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0 if m ! n

L if m = n

¶
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L
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L
sin

n�x
L

dx = 0

¶
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L
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L
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 
 

0 if m ! n

L if m = n

The last one for example, if m ! n

.

¶
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L
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1
2 ¶−L

L

cos
(m − n)�x

L
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L
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L
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(m + n)�x
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−L

L

= 0

If , thenm = n

¶
−L

L

sin
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L
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L
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−L

L
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L
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=
1
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L
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=
1
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With these integrals, we can compute the rest of the Fourier coefficients. Now we multiply by   andcos
n�x
L

integrate.

¶
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L
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L
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and so we have

an =
1
L ¶−L

L

f(x) cos
n�x
L

dx , n = 1, 2, 3, ...

and similarly, multiplying by  and integrating,sin
n�x
L

bn =
1
L ¶−L

L

f(x) sin
n�x
L

dx , n = 1, 2, 3, ...
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Example 1: Find the Fourier series for the function  .f(x) = x on [−L, L]

Using the formulae above

a0 =
1
L ¶−L

L

f(x)dx

= −
1
L ¶−L

0

xdx +
1
L ¶0

L

xdx

=
2
L ¶0

L

xdx

= L

an =
1
L ¶−L

L

f(x) cos
n�x
L

dx

= −
1
L ¶−L

0

x cos
n�x
L

dx +
1
L ¶0

L

x cos
n�x
L

dx

=
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L
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L
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=
2L

n2�2 (cos n� − 1)

=
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 
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0 if n even

−
4L

n2�2 if n odd
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1
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L

f(x) sin
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L

dx

= −
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L
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1
L ¶0
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Thus the series is 
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2
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L
2

−
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=
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2

−
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∞

1
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L

One may now ask: does this series converge, and if so, does it converge to the original ? The answer is givenf(x)

by the following theorem.

The Fourier Theorem

Suppose that  and      and  is defined outside of  as beingf(x) f ∏(x) are piecewise continuous on [−L, L] f(x) [−L, L]

periodic with period 2L. Then  has a Fouier seriesf(x)

f(x) =
a0

2
+�

n=1

∞

(an cos
n�x
L

+ bn sin
n�x
L

)

 and the series converges to  wherever  is continuous and to the average of the left and right limits atf(x) f(x)

points where  is discontinuous.f(x)
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It is common to use the notation for the left and right hand limits as  and . Withf(a−) = lim
xda− f(x) f(a+) = lim

xda+
f(x)

this notation, one can say the the Fourier series converges at a jump (actually anywhere) to

 .
f(x−) + f(x+)

2

By the theorem, we have for the above example that the series does converge and that

f(x) =
L
2

−
4L
�2 �

n=1

∞

1
(2n − 1)2 cos

(2n − 1)�x

L

is a periodic function defined for all x which gives  and, what is called the periodic extension of x on [−L, L]

everywhere else. This is a saw tooth wave.x

Next we will find the Fourier series for a square wave.

Example 2: Let and suppose this is defined everywhere else by periodic extension.f(x) =
 

 
 

0 if −1 < x < 0

1 if 0 < x < 1

Now this is a odd function (shifted up ½) and so the series will have only sine terms (  and an = 0 for all n m 1)

a0 =
1
L ¶−L

L

f(x)dx

= ¶
−1

1

f(x)dx

= ¶
0

1

dx

= 1
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bn =
1
L ¶−L

L

f(x) sin
n�x
L

dx

= ¶
−1

1

f(x) sin n�xdx

= ¶
−1

0

0 sin n�xdx + ¶
0

1

1 sin n�xdx

=
1

n� (1 − cos n�)

=
 

 
 
 
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0 if n even
2

n� if n odd

and so

f(x) =
a0

2
+�

n=1

∞

bn sin n�x

=
1
2

+
2
� sin�x +

1
3

sin 3�x +
1
52 sin 5�x...

=
1
2

+
2
� �

n=1

∞

1
(2n − 1)

sin((2n − 1)�x)

It is interesting to see how sine waves are used to approximate this square wave. The graph below shows the

sum of the terms to  of the Fourier series. Notice how the series is converging to the half way pointsn = 25

where the original function jumps. Note also the behavior of the Fourier series near the corners of the square

wave. These “over shoots” are called Gibb’s phenomenon and are responsible for “ringing” in electrical circuits.
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Exercises

1. Find the Fourier series for the periodic extension of . What does the seriesf(x) =
 

 
 

0 if −1 < x < 0

x if 0 < x < 1

converge to when ?x = 1

2. Find the Fourier series for .cos22x

3. Sketch the periodic extension of . Show that the Fourier series for this function isf(x) = x2 on [0, 2]

.f(x) =
4
3

+
4
�2 �

n=1

∞

1
n2 cos n�x −

4
� �

n=1

∞

1
n sin n�x

By computing , show that f(0)

.�
n=1

∞

1
n2 = 1 +

1
22 +

1
32 +

1
42 + ... =

�2
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