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Fourier Series

There is the need in applied mathematics for general periodic functions. They are required, for example, in
finding solutions to partial differential equations. Instead of using power series, it is more appropriate to expand
periodic functions in terms of sines and cosines. Infinite series of the form

) = 5+ D@y cos P 4 b, sin M)

n=1

are called Fourier series. The functions cos % and sin % are periodic with period T = 271‘ To see this,

simply use identities to write out

nn(x+7T) _ NTX nrxT nwx nnT
COS—— 7 =COSTy—COST —— sin —3— T sin —5— T
nrnl nnl

This can only be equal to cos T if cos T =1 and sin —5— T = (. The only solutions to these equations are for

%T = 2kr for any integer k.
The fundamental period of cos T is when k=1 so nzT 27 and hence T = % The same can be shown for
sin 22X

As with power series, the problem is to compute the infinitely many coefficients a, and b,. With power series,
we differentiate. With Fourier series, we integrate. Assuming we can integrate term by term, consider

M

- a_Z()j_LdX+§an f_Lcosmzxdx+Zb j Slnwdx

=& -ny dx

24 Z(an cos @ + b, sin m) dx

fi A)dx

where we have used that the integrals of the sine and cosine functions over multiples of their periods are zero.
So we have the first coefficient

_1(*
ao=T §—L J(x)dx.

Note that the first term —=- 2 of the series is just the average value of f{x) on the interval [-L, L]. In order to
compute the rest of the coefficients, we will need to use the idenities

cosAcos B = 5[cos(A — B) + cos(A + B)]
cosAsinB = 3[sin(A + B) — sin(A — B)]
sinAsinB = 3[cos(A — B) — cos(A + B)]
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to the compute the following integrals:

j‘L Mnx Nux {Olfmin
— dx

LT ST T Litm=n
L
j_L cos mfx sin nzxdx =0
L Oif m=n
mrnx nIx _
j_L sin —— i sm—L dx {Lifmzn
The last one for example, if m + n
L L _
mmnx nnx ;1 (m—n)nx (m+n)nx
§_L sin —— i sin dx = > §_L cos 7 —CoSs 7 dx
in (m—n)nx (m+n)nx |
_ L _L _ L -0
7 m—n m+n
-L
If m = n, then
L L
y_L Smn_zx sin mzxdx = 5_ sin2%dx
= % § . 1—cos 2n7zx]d
2nnx
_ 1 _
2 |1 2n7z L

-L

With these integrals, we can compute the rest of the Fourier coefficients. Now we multiply by cos n_zx and
integrate.

(oo}

L L
nmx ;. _ ao nwx mnx nmx . MAX nnx
‘y_Lﬂx)cos T dx = y_L[ 5 Cos T+ E (am cos [ CosTy + by, sin [ CosTr =) |d.

m=1

O+Z am j coswcos mzxdx+0:anL

and so we have

L
an =% y_Lﬂx)cos%dx ,n=1,273,..

and similarly, multiplying by sin % and integrating,

—%j feosin o dx n=1,2.3,.
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Example 1: Find the Fourier series for the function f(x) = |x| on [-L,L] .

Using the formulae above

aop

L o
—% j xdx+— 5 xdx

%ijdx
=L

a %f fe) cos " i

j xcosmdx+—§ xcosmdx
L), L

j XCOS n_zxdx

hIN

T n?
if n even
2 if n odd

L
b, = % §_L f{x) sin malx

0
—% § Lxsmmd)ﬁ— § xsmwdx

=0

cosnm—1)

Thus the series is

cosT+3zc ST T3z cos T

4L il 1 2n—1)nx
T2 Z_; Qn-12°%" L

+Z(ancos—+b smm) = —4L[ 1 3nx 1 Snx ]

N

P~ o

One may now ask: does this series converge, and if so, does it converge to the original f(x)? The answer is given
by the following theorem.

The Fourier Theorem

Suppose that f(x) and f '(x) are piecewise continuous on [—L, L] and f{(x) is defined outside of [-L, L] as being
periodic with period 2L. Then f(x) has a Fouier series

f(x)——+2( »cos 17 + b, sin 17X

and the series converges to f{x) wherever f(x) is continuous and to the average of the left and right limits at
points where f{(x) is discontinuous.
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It is common to use the notation for the left and right hand limits as fla™) = lim f(x) and fla*) = ;Lrﬁ flx). With
this notation, one can say the the Fourier series converges at a jump (actually anywhere) to

JOO) +fx")
5 :

By the theorem, we have for the above example that the series does converge and that

L 4L % 1 (2n—1)nx
) =5-73 z; -2 1

is a periodic function defined for all x which gives |x| on [-L, L] and, what is called the periodic extension of
|x| everywhere else. This is a saw tooth wave.

-3 -2 -L I 2z 3L

Next we will find the Fourier series for a square wave.

if —1<x<
Example 2: Let fix) = { (1) i f o< fc < (1) and suppose this is defined everywhere else by periodic extension.
1 -
0.6 1
02]
4 -2 0 2 4

Now this is a odd function (shifted up ¥2) and so the series will have only sine terms (a, =0 for all n > 1) and
L
ap = % §_L Jx)dx

jil Ax)dx

,f; dx
1
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-1
L

L
| oo sin P

1

5_1 Sf(x) sin nmxdx

0 1
= f 1 0 sin nmtxdx + so 1 sin ntxdx

%(1 —COSNm)

0 ifneven

" | & ifnodd
and so
fix) = %+i b, sinnmx
n=1
= %+%[sinnx+%sin37zx+5—12sin57zx...]
=1+ 3 Gy Sin@n = m)

It is interesting to see how sine waves are used to approximate this square wave. The graph below shows the
sum of the terms to n = 25 of the Fourier series. Notice how the series is converging to the half way points
where the original function jumps. Note also the behavior of the Fourier series near the corners of the square
wave. These “over shoots” are called Gibb’s phenomenon and are responsible for “ringing” in electrical circuits.

n=25
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Exercises

0 if -1<x<0

1. Find the Fourier series for the periodic extension of f{x) = . . What does the series
x if O<x<l1

converge to when x = 1?

2. Find the Fourier series for cos?2x.

3. Sketch the periodic extension of f(x) = x* on [0, 2]. Show that the Fourier series for this function is
S = % + iz z —5 COS N7TX — % Z % sin nmx.

By computing f(0), show that



