
Convolution

Consider the problem of solving the nonhomogeneous second-order linear differential equation

x′′ + ω2x = f(t),

where ω > 0 and f(t) is a continuous function on [0,∞). The solution will be x(t) = xh+xp, where
the homogeneous part of the solution is

xh = c1 cosωt+ c2 sinωt,

and variation of parameters can be used to find a particular solution of the form

xp = u1x1 + u2x2 = u1 cosωt+ u2 sinωt.

The Wronskian is

W =

∣∣∣∣ cosωt sinωt
−ω sinωt ω cosωt

∣∣∣∣ = ω cos2 ωt+ ω sin2 ωt = ω,

from which we get

u′1 =

∣∣∣∣ 0 sinωt
f(t) ω cosωt

∣∣∣∣
ω

= −f(t) sinωt

ω
and u′2 =

∣∣∣∣ cosωt 0
−ω sinωt f(t)

∣∣∣∣
ω

=
f(t) cosωt

ω
.

Integrating u′1 to get u1 gives

u1 = − 1

ω

∫
f(t) sinωt dt,

where the integration constant can be any number since any antiderivative will do. Instead of
writing u1 as an indefinite integral, it can instead be written as a definite integral function of t of
the form

u1 = − 1

ω

∫ t

0
f(τ) sinωτ dτ,

where τ is used as a “dummy variable” inside the integral. Similarly, u2 can be written

u2 =
1

ω

∫ t

0
f(τ) cosωτ dτ,

A particular solution is therefore

xp =

(
− 1

ω

∫ t

0
f(τ) sinωτ dτ

)
cosωt+

(
1

ω

∫ t

0
f(τ) cosωτ dτ

)
sinωt

= − 1

ω

∫ t

0
f(τ) sinωτ cosωt dτ +

1

ω

∫ t

0
f(τ) cosωτ sinωt dτ

= − 1

ω

(∫ t

0
f(τ) sinωτ cosωt dτ −

∫ t

0
f(τ) cosωτ sinωt dτ

)
= − 1

ω

∫ t

0
f(τ)(sinωτ cosωt− cosωτ sinωt) dτ = − 1

ω

∫ t

0
f(τ) sin(ωτ − ωt) dτ

= − 1

ω

∫ t

0
f(τ) sinω(τ − t) dτ =

1

ω

∫ t

0
f(τ) sinω(t− τ) dτ.



This particular solution, which is expressed as an integral in terms of f(t) and sinωt, is an example
of what is called a convolution of two functions.

Definition: If f(t) and g(t) are piecewise continuous functions on [0,∞), then the convolution
of f and g, denoted f ∗ g, is defined by

f ∗ g =

∫ t

0
f(τ)g(t− τ) dτ.

The convolution may be written (f ∗ g)(t) to emphasize that it is a function of t. □

Convolution Theorem: If L {f(t)} = F (s) and L {g(t)} = G(s), then

L {f ∗ g} = F (s)G(s), or equivalently, L −1{F (s)G(s)} = f ∗ g. □

We can use Laplace transforms to solve the initial-value problem

x′′ + ω2x = f(t), x(0) = A, x′(0) = B.

Transforming the equation gives

L {x′′}+ ω2L {x} = L {f(t)}

s2X(s)− sx(0)− x′(0) + ω2X(s) = F (s)

s2X(s)−As−B + ω2X(s) = F (s)

(s2 + ω2)X(s) = As+B + F (s)

X(s) =
As

s2 + ω2
+

B

s2 + ω2
+

F (s)

s2 + ω2

X(s) = A
s

s2 + ω2
+

B

ω

ω

s2 + ω2
+

1

ω
F (s)

ω

s2 + ω2
.

Now taking inverse Laplace transforms and applying the convolution theorem to the third term,
we get the general solution of the nonhomogeneous equation.

x(t) = AL −1

{
s

s2 + ω2

}
+

B

ω
L −1

{
ω

s2 + ω2

}
+

1

ω
L −1

{
F (s)

ω

s2 + ω2

}
= A cosωt+

B

ω
sinωt+

1

ω
(f(t) ∗ sinωt)

= A cosωt+
B

ω
sinωt+

1

ω

∫ t

0
f(τ) sinω(t− τ) dτ.


