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MATH 126 (Winter, 2014)
Term Test 2
by George Ballinger

Answer the questions in the space provided.
This test has 12 questions for a total of 25 marks.

1. (2 marks) Consider the factorial function f : N — N given by f(n) = n! where N = {0,1,2,3,...}
is the set of natural numbers. Is this function one-to-one? Is this function onto? Briefly justify

your answers.
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2. (1 mark) If f(n) = [n/2] and S = {0,1,2,3,4}, then find |f(S)|, i.e. the cardinality of the
image of S. Recall that [z]| denotes the ceiling of .

£(S)- Yo,1,27 . 156\=3

3. (3 marks) Prove that f(x) = logy(z3 + 1) is O(log, ) by finding positive constants (i.e. wit-
nesses) C and k from the definition of big-O.
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4. (3 marks) Express the greatest common divisor of 14453 and 7081 as a linear combination of
14453 and 7081.
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= ¢q.708|- Q- 143

5. (1 mark) List all the positive integefs less than 10 that are relatively prime to 10.

\, 2.7, 1

6. (1 mark) Find two integers, one positive and the other negative, that are congruent to 15
modulo 7.
|, 8, 22,21,3¢, et

—'ép -’35-29) _,2,",' e,{'C.

7. (1 mark) Convert the hexadecimal number (2000AD)16 to base 10 without using your calcula-
tor’s number system conversion keys (i.e. show your calculations).

‘ o
(A)WADBM: = (65-\-' lo <16 + 12x 16
= QolTI52 + 160 + 13
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= Q047325
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8. (2 marks) Suppose a sequence {a,} satisfies the recurrence relation
G = N1+ 3an_3 — 6
and the initial conditions a9 = 5 and a; = 2. Find ag,a3 and a4.
Q= Aai+30.-6 = 2(A+3(5)-6 =
-30,+30-6 = 303) +3(2)-
= 4az +3a,-6 = 4(33)+3()-¢
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9. (2 marks) Prove that ZT x Z is countable by showing that the elements of Z* x ZT can be
listed in a sequence {a,} = ai1,a2,as,.... List at least the first 10 terms of your sequence so
as to clearly show how your sequence is constructed. Note that elements of Z* x Z* may be

tabulated as follows:
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10. (3 marks) Prove that if f : B — C is one-to-one and g : A — B is one-to-one, then f o g is
one-to-one.
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11. (3 marks) Use the definitions of congruence and divides to prove that for all z,y, m,n € Z with
m,n > 0, if n|m and z = y(mod m), then z = y(mod n).
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12. (3 marks) Use the Principle of Mathematical Induction to prove that
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for every positive integer n.
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