

Name: SOLUTIONS

MATH 126 (Winter, 2015)

Term Test 2

by George Ballinger

Answer the questions in the space provided. This test has 12 questions for a total of 25 marks.

- 1. (2 marks) Consider the function $f: \mathbb{N} \to \mathbb{N}$ where $f(n) = \lceil (n+1)/2 \rceil$ and $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ is the set of natural numbers. Recall that $\lceil x \rceil$ denotes the ceiling of x.
 - (a) Is f one-to-one? Briefly justify your answer.

No.
$$f(0) = 1 = f(1)$$

(b) Is f onto? Briefly justify your answer.

- 2. (3 marks)
 - (a) Define $g: \mathbb{R} \to \mathbb{R}$ to be the absolute value function g(x) = |x|. Let $X = \{-2, -1, 0, 1\}$ and $Y = \{0, 1, 2, 3\}$. Evaluate both $g(X \cap Y)$ and $g(X) \cap g(Y)$.

$$g(x \cap Y) = g(\{0,1\}) = \{0,1\}$$

 $g(x) \cap g(Y) = \{0,1,2\} \cap \{0,1,2,3\} = \{0,1,2\}$

(b) In general, what property must a function $f:A\to B$ have in order to guarantee that $f(S\cap T)=f(S)\cap f(T)$ for all $S\subseteq A$ and $T\subseteq A$?

3. (1 mark) Define $f: \mathbb{Z} \to \mathbb{Z}$ by $f(a) = a \mod 5$. What is the range of f?

4. (2 marks) Show that the sequence $\{a_n\}$, where $a_n = 3^n$, is a solution of the recurrence relation $a_n = a_{n-1} + 6a_{n-2}$.

$$a_{n-1} + 6a_{n-2} = 3^{n-1} + 6 \cdot 3^{n-2} = 3^{n-1} + 2 \cdot 3 \cdot 3^{n-2}$$

= $3^{n-1} + 2 \cdot 3^{n-1} = 3 \cdot 3^{n-1} = 3^n = a_n$

5. (1 mark) Show that the set $S = \{n\pi | n \in \mathbb{Z}\}$ of integer multiples of π is countable. Listing the elements of S in a sequence will suffice, provided it's clear how the sequence is constructed.

$$5 = \{0, \pi, -\pi, 2\pi, -2\pi, 3\pi, -3\pi, 000\}$$

6. (3 marks) Prove that f(x) is $O(x^2)$, where

$$f(x) = \frac{6x^3 + x^2 + 7}{\sqrt{4x^2 + 9}},$$

by finding positive constants ("witnesses") C and k from the definition of big-O.

$$|f(x)| = \frac{6x^3 + x^2 + 7}{\sqrt{4x^2 + q}} \quad \text{for } x > 0$$

$$\leq \frac{6x^3 + x^3 + 7x^3}{\sqrt{4x^2 + q}} \quad \text{for } x > 1$$

$$= \frac{|4x^3|}{\sqrt{4x^2 + q}} \quad \text{for } x > 1$$

$$\leq \frac{|4x^3|}{\sqrt{4x^2}} \quad \text{for } x > 1$$

$$= \frac{|4x^3|}{\sqrt{4x^2}} \quad \text{for } x > 1$$

$$= \frac{|4x^3|}{\sqrt{4x^2}} \quad \text{for } x > 1$$

$$= \frac{|4x^3|}{\sqrt{4x^2}} \quad \text{for } x > 1$$

- 7. (3 marks)
 - (a) Use the Euclidean Algorithm to find the greatest common divisor of 4891 and 12191.

$$|2191 = 4891 \cdot 2 + 2409$$

 $4891 = 2409 \cdot 2 + 73 - gcd = 73$
 $2409 = 73 \cdot 33 + 0$

(b) Find the least common multiple of 4891 and 12191.

$$lcm = \frac{4891 \cdot 12191}{73} = 816,797$$

8. (1 mark) List all the positive integers less than 12 that are relatively prime to 12.

9. (1 mark) If baby Jane is born on a Friday, then on what day of the week will she have her first birthday, 365 days later?

10. (1 mark) Convert the hexadecimal number (C0FFEE)₁₆ to base 10 without using your calculator's number system conversion keys (i.e. show your calculations).

$$(COFFEE)_{16} = 12.16^{5} + 0.16^{4} + 15.16^{3} + 15.16^{2} + 14.16^{4} + 14.16^{9}$$

= 12,582,912 + 61,440 + 3,840 + 224 + 14
= 12,648,430

- 11. (4 marks)
 - (a) Find a positive integer m such that $6^2 \equiv 4^2 \pmod{m}$ but $6 \not\equiv 4 \pmod{m}$.

$$m / (6^{2} + 4^{2}) \qquad m / (6-4)$$

m must divide 20, but not 2. . on can be 4, 5, 10 or 20

(b) Use the definitions of *congruence* and *divides* to prove that for all $a, b, m \in \mathbb{Z}$ with m > 0, if $a \equiv b \pmod{m}$, then $a^2 \equiv b^2 \pmod{m}$. You may not use any theorems about congruence or divisibility (only their definitions) unless you also prove them.

Suppose
$$a = b \pmod{m}$$
. Then $m \mid (a-b)$ and so $a-b = mk$ for some $k \in \mathbb{Z}$. Thus $a^2-b^2 = (a+b)(a-b) = (a+b)mk = jm$ where $j = (a+b)k \in \mathbb{Z}$. $m \mid (a^2-b^2)$ and so $a^2 = b^2 \pmod{m}$.

12. (3 marks) Use the Principle of Mathematical Induction to prove that $1+3+5+\cdots+(2n-1)=n^2$ for every positive integer n.

Base case:
$$|=|^2$$

Ind. step: Suppose $|+3+5+\cdots+(2K-1)|=K^2$ where $K \in \mathbb{Z}^+$.

Then $|+3+5+\cdots+(2K-1)|+(2(K+1)-1)$
 $= K^2 + 2K+1$
 $= (K+1)^2$

.. By PMI, 1+3+5+...+ (2n-1) = n2 for all n = Z+