One-to-One and Onto

Definition: Let $f : A \to B$ be a function. Then f is said to be

1. one-to-one or injective if

$$\forall x_1 \in A \ \forall x_2 \in A \ \Big((f(x_1) = f(x_2)) \to (x_1 = x_2) \Big),$$

or equivalently,

$$\forall x_1 \in A \ \forall x_2 \in A \ \Big((x_1 \neq x_2) \to (f(x_1) \neq f(x_2)) \Big),$$

2. onto or surjective if

$$\forall y \in B \ \exists x \in A \ (f(x) = y),$$

or equivalently,

f(A) = B,

i.e. the range equals the codomain.

3. bijective if f is one-to-one and onto; in this case f is called a bijection or a one-to-one correspondence.

Examples: Determine whether the following functions are one-to-one or onto.

- 1. $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$.
 - (a) f is not one-to-one since -3 and 3 are in the domain and f(-3) = 9 = f(3).
 - (b) f is not onto since, for example, there is no real number that maps to -2 in the codomain. If $x^2 = -2$, then $x = \pm \sqrt{-2}$, which is not real.
- 2. $f: \mathbb{Z}^+ \to \mathbb{R}$ be defined by $f(x) = \sqrt{x}$.
 - (a) f is one-to-one since if x_1 and x_2 are positive integers and $\sqrt{x_1} = \sqrt{x_2}$, then $x_1 = x_2$ by squaring both sides.
 - (b) f is not onto since, for example, there is no positive integer that maps to 1/2 in the codomain. If $\sqrt{x} = 1/2$, then x = 1/4, which is not a positive integer.
- 3. $f : \mathbb{Z} \to \mathbb{Z}^+$ be defined by f(x) = |x| + 1.
 - (a) f is not one-to-one since -2 and 2 are in the domain and f(-2) = 3 = f(2).
 - (b) f is onto since if y is any positive integer in the codomain, then x = y 1 is a (nonnegative) integer in the domain whereby f(x) = |x|+1 = x+1 = (y-1)+1 = y. Note that the (nonpositive) integer x = -y + 1 could instead have been used.
- 4. $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^3 4$.
 - (a) f is one-to-one since if x_1 and x_2 are real numbers and $x_1^3 4 = x_2^3 4$, then $x_1^3 = x_2^3$ and so $x_1 = x_2$.
 - (b) f is onto since if y is any real number in the codomain, then $x = \sqrt[3]{y+4}$ is a real number in the domain whereby $f(x) = (\sqrt[3]{y+4})^3 4 = (y+4) 4 = y$.