Images of Set Unions and Intersections

Theorem: Let $f: A \to B$ be a function. If $S \subseteq A$ and $T \subseteq A$, then

- 1. $f(S \cup T) = f(S) \cup f(T)$, and
- 2. $f(S \cap T) \subset f(S) \cap f(T)$.

Proof:

1. We prove equality by showing $f(S \cup T)$ and $f(S) \cup f(T)$ are subsets of each other.

Suppose $y \in f(S \cup T)$. Then y = f(x) for some $x \in S \cup T$. Since $x \in S \cup T$, then $x \in S$ or $x \in T$. Therefore $y \in f(S)$ or $y \in f(T)$, which implies $y \in f(S) \cup f(T)$. This proves $f(S \cup T) \subseteq f(S) \cup f(T)$.

Now suppose $y \in f(S) \cup f(T)$. Then $y \in f(S)$ or $y \in f(T)$. Therefore y = f(x) for some $x \in S$ or y = f(x) for some $x \in T$. In either case y = f(x) for some $x \in S \cup T$, which implies $y \in f(S \cup T)$. This proves $f(S) \cup f(T) \subseteq f(S \cup T)$.

Since $f(S \cup T) \subseteq f(S) \cup f(T)$ and $f(S) \cup f(T) \subseteq f(S \cup T)$, then $f(S \cup T) = f(S) \cup f(T)$.

2. Suppose $y \in f(S \cap T)$. Then y = f(x) for some $x \in S \cap T$. Since $x \in S \cap T$, then $x \in S$ and $x \in T$. Therefore $y \in f(S)$ and $y \in f(T)$, which implies $y \in f(S) \cap f(T)$. This proves $f(S \cap T) \subseteq f(S) \cap f(T)$.

Note: In general $f(S \cap T) \neq f(S) \cap f(T)$ unless f is one-to-one.

Example: Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined by $f(n) = n^2$. If

$$S = \{0, 1, 2, 3\}$$
 and $T = \{-2, -1, 0, 1\},\$

then

$$f(S) = \{0, 1, 4, 9\}$$

$$f(T) = \{0, 1, 4\}$$

$$S \cup T = \{-2, -1, 0, 1, 2, 3\}$$

$$S \cap T = \{0, 1\}$$

$$f(S \cup T) = \{0, 1, 4, 9\}$$

$$f(S) \cup f(T) = \{0, 1, 4, 9\}$$

$$f(S \cap T) = \{0, 1\}$$

$$f(S) \cap f(T) = \{0, 1, 4\}.$$

Here $f(S \cup T) = f(S) \cup f(T)$ and $f(S \cap T) \subseteq f(S) \cap f(T)$, yet $f(S \cap T) \neq f(S) \cap f(T)$.