Mathematics 101 Test #3A Name: SoLLTIiDNS

CAMOSUN
Instructor: George Ballinger Section:
Term: Winter, 2017
The Sharp EL-531 calculator may be used on this test. Mark:
Show all of your work in the space provided. | o 2 5
The number of marks for each question is indicated in brackets.

Give exact answers (no decimals) unless told otherwise.
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1. Consider the sequence {a,} = , , , yaeen
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(a) Find and simplify a formula, a,, for the n™ term of the sequence.
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(b) Determine whether the sequence {a,} converges or diverges. If it converges, find its limit. Ifit
diverges, determine whether it diverges to infinity, negative infinity, or neither.
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(c) Determine whether the series Zan converges or diverges and identify the test you are using.
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2. Find the exact sum of each of the following convergent series.
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3. Suppose Zan and Zb,, are series where 0 <a, <b, forall n>1. Circle all of the statements that must be

n=1 n=1
true. No justification is required. ‘DCT
[1] |
(a) If D a, converges, then ) b, converges. (d) If Db, diverges, then ) a, diverges.
n=1 n=1 n=l n=1
If Zan diverges, then an diverges. (e) Either both series Zan and an converge
n=1 n=1 n=1 n=1

~ > > or they both diverge.
@If an converges, then Zan converges. Y 8
n=1 n=1

4. Determine whether each series converges or diverges. Identify which test you are using.
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5. Consider the series

i 1
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(a) Verify that the conditions of the integral test are satisfied by the series and use the integral test to
determine whether the series converges or diverges.
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(b) The 2017™ partial sum, S,,,,, of this series is approximately 2.824156266. Explain whether or not this
is a reasonable approximation for the sum of the series.
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6. Find a geometric power series (using X -notation) for f(x)=

3 centred at ¢ =1 and determine its interval

of convergence. - . ‘ ‘
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7. Use the Maclaurin series for cosx to express cos+/x dx as a series. Then use the first three nonzero terms of

© Ly

1
the series to approximate the value of Icos Jx dx and estimate the size of the error by using the Alternating
0

Series Remainder theorem. Be sure to verify that the conditions of the Alternating Series Remainder theorem
are satisfied.
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