\qquad

MATH 101 (Winter, 2023) Test 1B

1. Let $f(x)=\arccos (\sin x)$ for $0 \leq x \leq \pi / 2$.
(a) (1 mark) Evaluate $f(0)$.
(b) (2 marks) Find and simplify $f^{\prime}(x)$.
2. Let $\theta=\arccos (1 / 3)$.
(a) (2 marks) Evaluate $\sin \theta$.
(b) (2 marks) Evaluate $\sin 2 \theta$. Hint: Use a double-angle formula.
3. (2 marks) Integrate $\int \frac{d x}{x^{2}-6 x+25}$.
4. (3 marks) Evaluate $\int_{1}^{e} \frac{d x}{x \sqrt{4-(\ln x)^{2}}}$.
5. Consider the region in the plane bounded by the curves $y=\cosh x, y=0, x=0$, and $x=1$.
(a) (3 marks) Find the area of the region. Include a sketch of the curves and shade the region.
(b) (3 marks) Find the perimeter of the region.
(c) (2 marks) Set up, but do not evaluate, an integral representing the volume of the solid formed by revolving the region about the \boldsymbol{x}-axis.
6. (5 marks) Each end of a 6 meter long tank is in the shape of an isosceles triangle measuring 2 meters across the bottom and having height 1 meter, as illustrated. If the tank is sitting flat on the ground and is full of water, which has weight density $9,800 \mathrm{~N} / \mathrm{m}^{3}$, then how much work is required to pump all the water out through a hole at the top of the tank?

