
Review of Limits 
(for more details see sec 1.2-1.5 and 3.5) 

 

 

Let a, L and M represent real numbers. 

 

Types of Limits: 
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 one-sided limit (from the left) 
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 limit at infinity 
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 limit at (negative) infinity 

 

A limit either exists and equals L or it does not exist, in which case it may be or    

(i.e. infinite limits) or neither. 
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2. If 0M  and 0L , then 
)(

)(
lim

xg

xf

ax
 does not exist (d.n.e.); it may be  or neither. 

 

3. If 0 LM , then 
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 may or may not exist and is said to be in the 

indeterminate form 
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cannot determine whether 
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 exists, what it equals if it does exist, or 

whether it is an infinite limit if it does not exist.  Consider these simple examples: 

 

11limlim
00


 xx x

x
 0limlim

0

2

0



x

x

x

xx
 

 

xx

x

xx

1
limlim

020 
   d.n.e. 

 2030

1
limlim

xx

x

xx
  (d.n.e.) 


