Alternating Series

An alternating series is a series whose terms alternate in sign, having the form

$$\sum_{n=1}^{\infty} (-1)^n a_n$$
 or $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$

where $a_n > 0$ represents the absolute value of the n^{th} term of the series. Two examples are

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots$$
 (the alternating harmonic series)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n+1)^2} = -\frac{1}{9} + \frac{1}{25} - \frac{1}{49} + \frac{1}{81} - \frac{1}{121} + \dots$$

Other ways of writing the alternating signs include $(-1)^{n-1} = (-1)^{n+1}$ and $\cos n\pi = (-1)^n$.

The following test guarantees convergence of an alternating series.

Alternating Series Test (AST): An alternating series converges if both of the following conditions are satisfied.

- 1. $\lim_{n\to\infty} a_n = 0$, and
- 2. $a_{n+1} \leq a_n$ for all $n \geq N$, where N is some fixed positive integer

Note that if condition 1 is not satisfied, then the series will diverge by the n^{th} Term Test.

The following theorem provides an upper bound on the error associated with using partial sums to approximate the sum of a convergent alternating series.

Alternating Series Remainder (ASR) Theorem: Suppose an alternating series satisfies the conditions of the AST with N = 1. Let S be the sum of the series and let S_N be the N^{th} partial sum. If $R_N = S - S_N$ is the remainder (or error), then

$$|R_N| \le a_{N+1}.$$

Moreover, if a_{N+1} is being added within the series, then

$$0 \le R_N \le a_{N+1} \quad \text{and} \quad S_N \le S \le S_N + a_{N+1},$$

while if a_{N+1} is being subtracted within the series, then

$$-a_{N+1} \le R_N \le 0$$
 and $S_N - a_{N+1} \le S \le S_N$.