

Mark:

25

MATH 101 (Fall, 2025) Test 3

1. (2 marks) Answer whether the statements are True or False. No justification is required.

(a) _____ (b) ____ (c) ____ (d) ____

(a) If the sequence $\{a_n\}$ converges to zero, then $\sum_{n=1}^{\infty} a_n$ converges.

(b) If $0 < a_n \le b_n$ for all $n \ge 1$ and $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} b_n$ converges.

(c) If $a_n \neq 0$ for all $n \geq 1$ and $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 0$, then $\sum_{n=1}^{\infty} a_n$ converges.

(d) If $a_n > 0$ and $b_n > 0$ for all $n \ge 1$, $\sum_{n=1}^{\infty} a_n$ converges, and $\lim_{n \to \infty} \frac{b_n}{a_n} = 2$, then $\sum_{n=1}^{\infty} b_n$ converges.

2. (3 marks) Determine whether the series converges conditionally, converges absolutely, or diverges. Identify which tests you are using and show that all of the conditions of the tests are satisfied.

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[4]{n}}$$

3. Find the sum of each convergent series.

(a) (2 marks)
$$\sum_{n=1}^{\infty} \left(4^{1/n} - 4^{1/(n+1)} \right)$$

(b)
$$(1 \text{ mark}) \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \pi^{2n}$$

4. (3 marks) Determine whether the series $\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2}$ converges or diverges. Identify which test you are using.

- 5. Let $f(x) = \cosh x$.
 - (a) (2 marks) Find and simplify the 4th Maclaurin polynomial, $P_4(x)$, for f(x).

(b) (1 mark) Use $P_4(x)$ from part (a) to approximate $\cosh(1/2)$. Express your answer as a fraction reduced to lowest terms.

(c) (1 mark) Use the **definition** of Maclaurin series to find the Maclaurin series for f(x). Express your answer using Σ -notation.

6. (3 marks) Use a power series for $\sin x$ to find a Taylor series for $f(x) = 5x \sin(5x^2)$ centered at c = 0. Express your answer using Σ -notation. What is the interval of convergence of the Taylor series?

- 7. Let $f(x) = \sum_{n=0}^{\infty} \frac{3}{(n+1)5^n} (x+1)^{n+1}$ be a power series function centered at c = -1.
 - (a) (1 mark) Find f'(x), expressed in the form of a power series centered at c = -1.

- (b) (1 mark) What type of series is the series in part (a)?
- (c) (2 marks) Find the interval of convergence of the power series for f'(x) found in part (a).

(d) (2 marks) Evaluate f'(1).

(e) (1 mark) Find $\int f(x) dx$, expressed in the form of a power series centered at c = -1.