Name: $\qquad$

Mark:
25

## MATH 100 (Fall, 2022) <br> Test 3B

1. (4 marks) Evaluate $\int_{1}^{5} 6(x-1)^{2} d x$ by using the limit definition of a definite integral.
2. (2 marks) Consider the periodic wave function $y=f(x)$ consisting of unit semicircles, as shown in the graph below. Evaluate the following definite integrals.


$$
\int_{0}^{2} f(x) d x=\square ; \int_{2}^{0} f(x) d x=\square ; \int_{0}^{4} f(x) d x=\ldots ; \int_{0}^{4}|f(x)| d x=
$$

3. Let $f(x)=\frac{1}{x}$.
(a) (2 marks) Use Simpson's rule with $n=4$ to approximate $\int_{1}^{5} f(x) d x$.
(b) (1 mark) Find the exact value of $\int_{1}^{5} f(x) d x$.
(c) (1 mark) Find the average value of $f(x)$ on the interval $[1,5]$.
(d) (1 mark) Find the exact value of $c$ guaranteed to exist according to the Mean Value Theorem for Integrals for $f$ on the interval $[1,5]$.
4. (4 marks) Integrate $\int 9 x \sqrt{3 x+1} d x$.
5. (2 marks) Differentiate $f(x)=4 x e^{-5 x^{2}}$.
6. (2 marks) Find and simplify $f^{\prime}(4)$ if $f(x)=\log _{2}\left(2^{x}+2\right)$.
7. (3 marks) Find the particular solution, $f(x)$, of the differential equation with the given initial condition.

$$
f^{\prime}(x)=\sec x, f(\pi)=3
$$

8. (3 marks) Find the slope of the tangent line to the curve defined implicitly by the equation $y^{y}=x^{x}$ at the point ( $1 / 4,1 / 2$ ). Round your answer to three decimal places.
