

1. Given the graph of the function f(x) below, find $\lim_{x \to 1^+} f(x)$, or if it does not exist, then determine whether it is ∞ or $-\infty$ or neither.

2. If $f(x) = \frac{1}{1 - x^2}$ and $g(x) = \sin x$, then find and simplify the composite function $f \circ g$.

[2]

3. Let $f(x) = \frac{1 - \cos x}{x}$.

(a) Find the *x*-values (if any) at which f is not continuous and determine which of the discontinuities is removable.

[2]

(b) Note that $f(-\pi) = -2/\pi < 0$ and $f(\pi) = 2/\pi > 0$. What, if anything, can the Intermediate Value Theorem be used to conclude about the zeros of the function *f* on the interval $(-\pi, \pi)$? Briefly explain.

[1]

4. Evaluate the following limits and simplify your answer. If the limit does not exist, then determine whether it is ∞ or $-\infty$ or neither. Be sure to show all your work.

(a)
$$\lim_{x \to 2} \frac{3x^2 - 7x + 2}{x^2 - 4}$$

[2]

(b) $\lim_{\theta \to 0} \theta \sec \theta \cot \theta$

[2]

(c)
$$\lim_{x \to 6} \frac{\sqrt{x+3}-3}{x-6}$$

[2]

5. Use the **limit definition** of the derivative to find f'(x), where $f(x) = \frac{2}{2-5x}$.

[3]

6. Use derivative rules to calculate the derivatives of the following functions. Simplify your answers.

(a) $f(x) = 4x^3 + 7x^2 - 6x + 3$

[1]

(b)
$$y = 3\tan^4(5x+2)$$

[2]

(c)
$$y = \frac{-2x+1}{4x^2+3}$$

[2]

7. Find the slope of the tangent line to the curve $y = 6\sqrt{x} - \frac{8}{x}$ at x = 4.

[2]

8. State the product rule of differentiation and then prove it.

$$\frac{d}{dx}[f(x)g(x)] = \underline{\qquad}$$

[3]